Kuwait Civil Aviation Safety Regulations

PART 16 – ENVIRONMENTAL PROTECTION

VOLUME - II
Table of Contents

Table of Contents .. 2
Amendment Record... 4

PART I DEFINITIONS AND SYMBOLS... 5
Chapter 1 Definitions.. 5
Chapter 2 Symbols... 6

PART II VENTED FUEL.. 7
Chapter 1 Administration... 7
Chapter 2 Prevention of intentional fuel venting... 7

PART III EMISSIONS CERTIFICATION... 8
Chapter 1 Administration... 8
Chapter 2 Turbojet and Turbofan engines intended for propulsion only at subsonic speeds ... 9
 2.1 General .. 9
 2.2 Smoke ... 11
 2.3 Gaseous Emissions .. 11
 2.4 Information required ... 13
Chapter 3 Turbojet and turbofan engines intended for propulsion at supersonic speeds .. 15
 3.1 General .. 15
 3.2 Smoke ... 16
 3.3 Gaseous Emissions ... 17
 3.4 Information required ... 17

Appendix 1 MEASUREMENT OF REFERENCE PRESSURE RATIO................................. 19
Appendix 2 SMOKE EMISSION EVALUATION... 20
Appendix 3 INSTRUMENTATION AND MEASUREMENT TECHNIQUES FOR GASEOUS EMISSIONS ... 26
Attachment A TO APPENDIX 3. SPECIFICATION FOR HC ANALYSER.................. 39
Attachment B TO APPENDIX 3. SPECIFICATION FOR CO AND CO2 ANALYSERS 41
Attachment C TO APPENDIX 3. SPECIFICATION FOR NOx ANALYSER.................... 43
Attachment D TO APPENDIX 3. CALIBRATION AND TEST GASES 45
Attachment E	TO APPENDIX 3 THE CALCULATION OF THE EMISSIONS PARAMETERS- BASIS, MEASUREMENT CORRECTIONS AND ALTERNATIVE NUMERICAL METHOD……………………………………47
Attachment F	TO APPENDIX 3. SPECIFICATIONS FOR ADDITIONAL DATA..... 52
Appendix 4.	SPECIFICATION FOR FUEL TO BE USED IN AIRCRAFT TURBINE ENGINE EMISSION TESTING……………………………………53
Appendix 5.	INSTRUMENTATION AND MEASUREMENT TECHNIQUES FOR GASEOUS EMISSIONS FROM AFTERBURNING GAS TURBINE ENGINES……………………………………………………54
Attachment A	TO APPENDIX 5. SPECIFICATION FOR HC ANALYSER………… 68
Attachment B	TO APPENDIX 5. SPECIFICATION FOR CO AND CO2 ANALYSERS…………………………………………………………70
Attachment C	TO APPENDIX 5. SPECIFICATION FOR NOx ANALYSER………… 72
Attachment D	TO APPENDIX 5. CALIBRATION AND TEST GASES………………74
Attachment E	TO APPENDIX 5. THE CALCULATION OF THE EMISSIONS PARAMETERS - BASIS, MEASUREMENT CORRECTIONS AND ALTERNATIVE NUMERICAL METHOD…………………… 76
Attachment F	TO APPENDIX 5. SPECIFICATIONS FOR ADDITIONAL DATA..... 81
Appendix 6.	COMPLIANCE PROCEDURE FOR GASEOUS EMISSIONS AND SMOKE…………………………………………………………………………………82
Amendment Record

<table>
<thead>
<tr>
<th>Amendment No</th>
<th>Date of Issue</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PART I. DEFINITIONS AND SYMBOLS

CHAPTER 1. DEFINITIONS

Where the following expressions are used in Volume II of this part, they have the meanings ascribed to them below:

Afterburning. A mode of engine operation wherein a combustion system fed (in whole or part) by vitiated air is used.

Approach phase. The operating phase defined by the time during which the engine is operated in the approach operating mode.

Climb phase. The operating phase defined by the time during which the engine is operated in the climb operating mode.

Date of manufacture. The date of issue of the document attesting that the individual aircraft or engine as appropriate conforms to the requirements of the type or the date of an analogous document.

Derivative version. An aircraft gas turbine engine of the same generic family as an originally type-certificated engine and having features which retain the basic core engine and combustor design of the original model and for which other factors, as judged by the certificating authority, have not changed.

Exhaust nozzle. In the exhaust emissions sampling of gas turbine engines where the jet effluxes are not mixed (as in some turbofan engines for example) the nozzle considered is that for the gas generator (core) flow only. Where, however, the jet efflux is mixed the nozzle considered is the total exit nozzle.

Oxides of nitrogen. The sum of the amounts of the nitric oxide and nitrogen dioxide contained in a gas sample calculated as if the nitric oxide were in the form of nitrogen dioxide.

Rated thrust. For engine emissions purposes, the maximum take-off thrust approved by the certificating authority for use under normal operating conditions at ISA sea level static conditions, and without the use of water injection. Thrust is expressed in kilonewtons.

Reference pressure ratio. The ratio of the mean total pressure at the last compressor discharge plane of the compressor to the mean total pressure at the compressor entry plane when the engine is developing take-off thrust rating in ISA sea level static conditions.

Smoke. The carbonaceous materials in exhaust emissions which obscure the transmission of light.

Smoke Number. The dimensionless term quantifying smoke emissions (see 3 of Appendix 2).

Take-off phase. The operating phase defined by the time during which the engine is operated at the rated thrust.

Taxi/ground idle. The operating phases involving taxi and idle between the initial starting of the propulsion engine(s) and the initiation of the take-off roll and between the time of runway turn-off and final shutdown of all propulsion engine(s).

Unburned hydrocarbons. The total of hydrocarbon compounds of all classes and molecular weights contained in a gas sample, calculated as if they were in the form of methane.
CHAPTER 2. SYMBOLS

Where the following symbols are used in Volume II of this part, they have the meanings subscribed to them below: CO Carbon monoxide

\[D_p \] The mass of any gaseous pollutant emitted during the reference emissions landing and take-off cycle

\[F_n \] Thrust in International Standard Atmosphere (ISA), sea level conditions, for the given operating mode

Rated thrust

Rated thrust with afterburning applied unburned hydrocarbons (see definition) Nitric oxide

Nitrogen dioxide

Oxides of nitrogen (see definition) Smoke Number (see definition) Reference pressure ratio (see definition)
PART II. VENTED FUEL

CHAPTER 1. ADMINISTRATION

1.1 The provision of this Part shall apply to all turbine engine powered aircraft intended for operation in international air navigation manufactured after 18 February 1982.

1.2 Certification related to the prevention of intentional fuel venting shall be granted by the certificating authority on the basis of satisfactory evidence that either the aircraft or the aircraft engines comply with requirements of Chapter 2.

Note: The document attesting certification relating to fuel venting may take the form of a separate fuel venting certificate or a suitable statement contained in another document approved by the certificating authority.

1.3 The state of Kuwait shall recognize as valid a certification relating to fuel venting granted by the certificating authority of another Contracting State provided the requirements under which such certification was granted are not less stringent than the provision of Volume II of this part.

CHAPTER 2. PREVENTION OF INTENTIONAL FUEL VENTING

Aircraft shall be so designed and constructed as to prevent the intentional discharge into the atmosphere of liquid fuel from the fuel nozzle manifolds resulting from the process of engine shutdown following normal flight or ground operations.
PART III. EMISSIONS CERTIFICATION

CHAPTER 1. ADMINISTRATION

1.1 The provisions of 1.2 to 1.4 shall apply to all engines included in the classifications defined for emission certification purposes in Chapters 2 and 3 where such engines are fitted to aircraft engaged in international air navigation.

1.2 Emissions certification shall be granted by the certificating authority on the basis of satisfactory evidence that the engine complies with requirements which are at least equal to the stringency of the provisions of Volume II of this Part. Compliance with the emissions levels of Chapters 2 and 3 shall be demonstrated using the procedure described in Appendix 6.

Note—The document attesting emissions certification may take the form of a separate emissions certificate or a suitable statement contained in another document approved by the certificating authority.

1.3 The document attesting emissions certification for each individual engine shall include at least the following information which is applicable to the engine type:

a) name of certificating authority;

b) manufacturer=s type and model designation;

c) statement of any additional modifications incorporated for the purpose of compliance with the applicable emissions certification requirements;

d) rated thrust;

e) reference pressure ratio;

f) a statement indicating compliance with Smoke Number requirements;

g) a statement indicating compliance with gaseous pollutant requirements.

1.4 Contracting States shall recognize as valid emissions certification granted by the certificating authority of another Contracting State provided that the requirements under which such certification was granted are not less stringent than the provisions of Volume II of this Part.

1.5 Contracting States shall recognize as valid engine exemptions for an engine production cut-off requirement granted by a certificating authority of another Contracting State provided that the exemptions are granted in accordance with the process and criteria defined in the Environmental Technical Manual (Doc 9501), Volume II - Procedures for the Emissions Certification of Aircraft Engines.
CHAPTER 2. TURBOJET AND TURBOFAN ENGINES INTENDED FOR PROPULSION ONLY AT SUBSONIC SPEEDS

2.1 General

2.1.1 Applicability

2.1.1.1 The provisions of this chapter shall apply to all turbojet and turbofan engines, as further specified in 2.2 and 2.3, intended for propulsion only at subsonic speeds, except when certificating authorities make exemptions for:

a) specific engine types and derivative versions of such engines for which the type certificate of the first basic type was issued or other equivalent prescribed procedure was carried out before 1 January 1965; and

b) a limited number of engines over a specific period of time beyond the dates of applicability specified in 2.2 and 2.3 for the manufacture of the individual engine.

2.1.1.2 In such cases, an exemption document shall be issued by the certificating authority, the identification plates on the engines shall be marked “EXEMPT NEW” or “EXEMPT SPARE” and the grant of exemption shall be noted in the permanent engine record. Exemptions shall be reported by engine serial number and made available via an official public register.

2.1.1.3 The provisions of this chapter shall also apply to engines designed for applications that otherwise would have been fulfilled by turbojet and turbofan engines.

Note.-In considering exemptions, certificating authorities should take into account the probable numbers of such engines that will be produced and their impact on the environment. When such an exemption is granted, the certificating authority should consider imposing a time limit on the production of such engines for installation on new aircraft. Further guidance on issuing exemptions is provided in the Environmental Technical Manual (Doc 9501), Volume II - Procedures for the Emissions Certification of Aircraft Engines.

2.1.2 Emissions involved

The following emissions shall be controlled for certification of aircraft engines:

Smoke

Gaseous emissions

Unburned hydrocarbons (HC);

Carbon monoxide (CO); and

Oxides of nitrogen (NO\textsubscript{x}).

2.1.3 Units of measurement
2.1.3.1 The smoke emission shall be measured and reported in terms of Smoke Number (SN).

2.1.3.2 The mass \((D_p) \) of the gaseous pollutant HC, CO, or NO\(_x\) emitted during the reference emissions landing and take-off (LTO) cycle, defined in 2.1.4.2 and 2.1.4.3, shall be measured and reported in grams.

2.1.4 Reference conditions

2.1.4.1 Atmospheric conditions

The reference atmospheric conditions shall be ISA at sea level except that the reference absolute humidity shall be 0.00634 kg water/kg dry air.

2.1.4.2 Thrust settings

The engine shall be tested at sufficient thrust settings to define the gaseous and smoke emissions of the engine so that mass emission rates and Smoke Numbers can be determined at the following specific percentages of rated thrust as agreed by the certificating authority:

<table>
<thead>
<tr>
<th>LTO operating mode</th>
<th>Thrust setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off</td>
<td>100 per cent (F_{oo})</td>
</tr>
<tr>
<td>Climb</td>
<td>85 per cent (F_{oo})</td>
</tr>
<tr>
<td>Approach</td>
<td>30 per cent (F_{oo})</td>
</tr>
<tr>
<td>Taxi/ground idle</td>
<td>7 per cent (F_{oo})</td>
</tr>
</tbody>
</table>

2.1.4.3 Reference emissions landing and take-off (LTO) cycle

The reference emissions LTO cycle for the calculation and reporting of gaseous emissions shall be represented by the following time in each operating mode.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time in operating mode, minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off</td>
<td>0.7</td>
</tr>
<tr>
<td>Climb</td>
<td>2.2</td>
</tr>
<tr>
<td>Approach</td>
<td>4.0</td>
</tr>
<tr>
<td>Taxi/ground idle</td>
<td>26.0</td>
</tr>
</tbody>
</table>

2.1.4.4 Fuel specifications

The fuel used during tests shall meet the specifications of Appendix 4.

2.1.5 Test conditions
2.1.5.1 The tests shall be made with the engine on its test bed.

2.1.5.2 The engine shall be representative of the certificated configuration (see Appendix 6); off-take bleeds and accessory loads other than those necessary for the engine’s basic operation shall not be simulated.

2.1.5.3 When test conditions differ from the reference atmospheric conditions in 2.1.4.1, the gaseous emissions test results shall be corrected to the reference atmospheric conditions by the methods given in Appendix 3.

2.2 Smoke

2.2.1 Applicability

The provisions of 2.2.2 shall apply to engines whose date of manufacture is on or after 1 January 1983.

2.2.2 Regulatory Smoke Number

The Smoke Number at any of the four LTO operating mode thrust settings when measured and computed in accordance with the procedures of Appendix 2, or equivalent procedures as agreed by the certificating authority, and converted to a characteristic level by the procedures of Appendix 6 shall not exceed the level determined from the following formula:

\[
\text{Regulatory Smoke Number} = 83.6 (F_{oo})^{-0.274} \text{ or a value of 50, whichever is lower}
\]

Note.- Guidance material on the definition and the use of equivalent procedures is provided in the Environmental Technical Manual (Doc 9501), Volume II - Procedures for the Emissions Certification of Aircraft Engines.

2.3 Gaseous emissions

2.3.1 Applicability

The provisions of 2.3.2 shall apply to engines whose rated thrust is greater than 26.7 kN and whose date of manufacture is on or after 1 January 1986 and as further specified for oxides of nitrogen.

2.3.2 Regulatory levels

Gaseous emission levels when measured and computed in accordance with the procedures of Appendix 3 and converted to characteristic levels by the procedures of Appendix 6, or equivalent procedures as agreed by the certificating authority, shall not exceed the regulatory levels determined from the following formulas:

- Hydrocarbons (HC): \(D_p / F_{oo} = 19.6 \)
- Carbon monoxide (CO): \(D_p / F_{oo} = 118 \)
- Oxides of nitrogen (NOx):
 - a) for engines of a type or model for which the date of manufacture of the first individual production model was before 1 January 1996 and for which the date of manufacture of the individual engine was before 1 January 2000.
\[D_p/F_{\infty} = 40 + 2\pi F_{\infty} \]

b) for engines of a type or model for which the date of manufacture of the first individual production model was on or after 1 January 1996 or for which the date of manufacture of the individual engine was on or after 1 January 2000.

\[D_p/F_{\infty} = 32 + 1.6\pi F_{\infty} \]

c) for engines of a type or model for which the date of manufacture of the first individual production model was on or after 1 January 2004:

III-2-3 17/11/11

No. 7

1) for engines with a pressure ratio of 30 or less:
 i) for engines with a maximum rated thrust of more than 89.0 kN: \(D_p/F_{\infty} \)

\[= 19 + 1.6\pi F_{\infty} \]

ii) for engines with a maximum rated thrust of more than 26.7 kN but not more than 89.0 kN: \(D_p/F_{\infty} \)

\[= 37.572 + 1.6\pi F_{\infty} - 0.2087F_{\infty} \]

2) for engines with a pressure ratio of more than 30 but less than 62.5:
 i) for engines with a maximum rated thrust of more than 89.0 kN: \(D_p/F_{\infty} \)

\[= 7 + 2.0\pi F_{\infty} \]

ii) for engines with a maximum rated thrust of more than 26.7 kN but not more than 89.0 kN: \(D_p/F_{\infty} \)

\[= 42.71 + 1.4286\pi F_{\infty} - 0.4013F_{\infty} + 0.00642\pi F_{\infty} \times F_{\infty} \]

3) for engines with a pressure ratio of 62.5 or more: \(D_p/F_{\infty} \)

\[= 32 + 1.6\pi F_{\infty} \]

d) for engines of a type or model for which the date of manufacture of the first individual production model was on or after 1 January 2008 or for which the date of manufacture of the individual engine was on or after 1 January 2013:

1) for engines with a pressure ratio of 30 or less:
 i) for engines with a maximum rated thrust of more than 89.0 kN: \(D_p/F_{\infty} \)

\[= 16.72 + 1.4080\pi F_{\infty} \]

ii) for engines with a maximum rated thrust of more than 26.7 kN but not more than 89.0 kN: \(D_p/F_{\infty} \)

\[= 38.5486 + 1.6823\pi F_{\infty} - 0.2453F_{\infty} - 0.00308\pi F_{\infty} \times F_{\infty} \]
2) for engines with a pressure ratio of more than 30 but less than 82.6:

 i) for engines with a maximum rated thrust of more than 89.0 kN: \(D_p / F_{oo} = -1.04 + 2.0\pi_{oo} \)

 ii) for engines with a maximum rated thrust of more than 26.7 kN but not more than 89.0 kN: \(D_p / F_{oo} = 46.1600 + 1.4286\pi_{oo} - 0.5303F_{oo} + 0.00642\pi_{oo}F_{oo} \)

3) for engines with a pressure ratio of 82.6 or more:

\[D_p / F_{oo} = 32 + 1.6\pi_{oo} \]

For engines of a type or model for which the date of manufacture of the first individual production model was on or after 1 January 2014:

1) for engines with a pressure ratio of 30 or less:

 i) for engines with a maximum rated thrust of more than 89.0 kN: \(D_p / F_{oo} = 7.88 + 1.4080\pi_{oo} \)

 ii) for engines with a maximum rated thrust of more than 26.7 kN but not more than 89.0 kN: \(D_p / F_{oo} = 40.052 + 1.5681\pi_{oo} - 0.3615F_{oo} - 0.0018\pi_{oo}F_{oo} \)

2) for engines with a pressure ratio of more than 30 but less than 104.7:

 i) for engines with a maximum rated thrust of more than 89.0 kN: \(D_p / F_{oo} = -9.88 + 2.0\pi_{oo} \)

 ii) for engines with a maximum rated thrust of more than 26.7 kN but not more than 89.0 kN: \(D_p / F_{oo} = 41.9435 + 1.505\pi_{oo} - 0.5823F_{oo} + 0.005562\pi_{oo}F_{oo} \)

3) for engines with a pressure ratio of 104.7 or more:

\[D_p / F_{oo} = 32 + 1.6\pi_{oo} \]

Note: Guidance material on the definition and the use of equivalent procedures is provided in the Environmental Technical Manual (Doc 9501), Volume II - Procedures for the Emissions Certification of Aircraft Engines.

2.4 Information required

Note: The information required is divided into three groups: 1) general information to identify the engine characteristics, the fuel used and the method of data analysis; 2) the data obtained from the engine test(s); and 3) the results derived from the test data.
2.4.1 General information

The following information shall be provided for each engine type for which emissions certification is sought:

a) engine identification;
b) rated thrust (in kilonewtons);
c) reference pressure ratio;
d) fuel specification reference;
e) fuel hydrogen/carbon ratio;
f) the methods of data acquisition;
g) the method of making corrections for ambient conditions; and
h) the method of data analysis.

2.4.2 Test information

The following information shall be provided for each engine tested for certification purposes at each of the thrust settings specified in 2.1.4.2. The information shall be provided after correction to the reference ambient conditions where applicable:

a) fuel flow (kilograms/second);
b) emission index (grams/kilogram) for each gaseous pollutant; and
c) measured Smoke Number.

2.4.3 Derived information

2.4.3.1 The following derived information shall be provided for each engine tested for certification purposes:

a) emission rate, i.e. emission index × fuel flow, (grams/second) for each gaseous pollutant;
b) total gross emission of each gaseous pollutant measured over the LTO cycle (grams);
c) values of \(D_p / F_{oo} \) for each gaseous pollutant (grams/kilonewton); and
d) maximum Smoke Number.

2.4.3.2 The characteristic Smoke Number and gaseous pollutant emission levels shall be provided for each engine type for which emissions certification is sought.
CHAPTER 3. TURBOJET AND TURBOFAN ENGINES INTENDED FOR PROPULSION AT SUPersonic SPEEDS

3.1 General

3.1.1 Applicability

The provisions of this chapter shall apply to all turbojet and turbofan engines intended for propulsion at supersonic speeds whose date of manufacture is on or after 18 February 1982.

3.1.2 Emissions involved

The following emissions shall be controlled for certification of aircraft engines:

- Smoke
- Gaseous emissions
- Unburned hydrocarbons (HC);
- Carbon monoxide (CO); and
- Oxides of nitrogen (NO\(_x\)).

3.1.3 Units of measurement

3.1.3.1 The smoke emission shall be measured and reported in terms of Smoke Number (SN).

3.1.3.2 The mass \((D_p)\) of the gaseous pollutants HC, CO, or NO\(_x\) emitted during the reference emissions landing and take-off (LTO) cycle, defined in 3.1.5.2 and 3.1.5.3 shall be measured and reported in grams.

3.1.4 Nomenclature

Throughout this chapter, where the expression \(F^*_{\infty}\) is used, it shall be replaced by \(F_{oo}\) for engines which do not employ afterburning. For taxi/ground idle thrust setting, \(F_{oo}\) shall be used in all cases.

3.1.5 Reference conditions

3.1.5.1 Atmospheric conditions

The reference atmospheric conditions shall be ISA at sea level except that the reference absolute humidity shall be 0.00634 kg water/kg dry air.

3.1.5.2 Thrust settings

The engine shall be tested at sufficient power settings to define the gaseous and smoke emissions of the engine so that mass emission rates and Smoke Numbers corrected to the reference ambient conditions can be determined at the following specific percentages of rated output as agreed by the certificating authority.
<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Thrust setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off</td>
<td>100 per cent F_{∞}</td>
</tr>
<tr>
<td>Climb</td>
<td>65 per cent F_{∞}</td>
</tr>
<tr>
<td>Descent</td>
<td>15 per cent F_{∞}</td>
</tr>
<tr>
<td>Approach</td>
<td>34 per cent F_{∞}</td>
</tr>
<tr>
<td>Taxi/ground idle</td>
<td>5.8 per cent F_{∞}</td>
</tr>
</tbody>
</table>

3.1.5.3 **Reference emissions landing and take-off (LTO) cycle**

The reference emissions LTO cycle for the calculation and reporting of gaseous emissions shall be represented by the following time in each operating mode.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Time in operating mode, minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off</td>
<td>1.2</td>
</tr>
<tr>
<td>Climb</td>
<td>2.0</td>
</tr>
<tr>
<td>Descent</td>
<td>1.2</td>
</tr>
<tr>
<td>Approach</td>
<td>2.3</td>
</tr>
<tr>
<td>Taxi/ground idle</td>
<td>26.0</td>
</tr>
</tbody>
</table>

3.1.5.4 **Fuel specifications**

The fuel used during tests shall meet the specifications of Appendix 4. Additives used for the purpose of smoke suppression (such as organo-metallic compounds) shall not be present.

3.1.6 **Test conditions**

3.1.6.1 The tests shall be made with the engine on its test bed.

3.1.6.2 The engine shall be representative of the certificated configuration (see Appendix 6); off-take bleeds and accessory loads other than those necessary for the engine’s basic operation shall not be simulated.

3.1.6.3 Measurements made for determination of emission levels at the thrusts specified in 3.1.5.2 shall be made with the afterburner operating at the level normally used, as applicable.

3.1.7 When test conditions differ from the reference conditions in 3.1.5, the test results shall be corrected to the reference conditions by the methods given in Appendix 5.

3.2 **Smoke**

3.2.1 Regulatory Smoke Number
The Smoke Number at any thrust setting when measured and computed in accordance with the procedures of Appendix 2 and converted to a characteristic level by the procedures of Appendix 6 shall not exceed the regulatory level determined from the following formula:

\[\text{Regulatory Smoke Number} = 83.6 \left(F_{\infty}^{*} \right)^{-0.274} \text{ or a value of } 50, \text{ whichever is lower} \]

Note.—Certificating authorities may alternatively accept values determined using afterburning provided that the validity of these data is adequately demonstrated.

3.3 Gaseous emissions

3.3.1 Regulatory levels

Gaseous emission levels when measured and computed in accordance with the procedures of Appendix 3 or Appendix 5, as applicable, and converted to characteristic levels by the procedures of Appendix 6 shall not exceed the regulatory levels determined from the following formulas:

Hydrocarbons (HC):

\[D_p / F_{\infty}^{*} = 140(0.92)^{\pi_{\infty}} \]

Carbon monoxide (CO):

\[D_p / F_{\infty}^{*} = 4550(\pi_{\infty})^{-1.03} \]

Oxides of nitrogen (NO\textsubscript{x}):

\[D_p / F_{\infty}^{*} = 36 + 2.42\pi_{\infty} \]

Note.—The characteristic level of the Smoke Number or gaseous pollutant emissions is the mean of the values of all the engines tested, measured and corrected to the reference standard engine and reference ambient conditions, divided by the coefficient corresponding to the number of engines tested, as shown in Appendix 6.

3.4 Information required

Note.—The information required is divided into three groups: 1) general information to identify the engine characteristics, the fuel used and the method of data analysis; 2) the data obtained from the engine test(s); and 3) the results derived from the test data.

3.4.1 The following information shall be provided for each engine type for which emissions certification is sought:

a) engine identification;

b) rated output (in kilonewtons);

c) rated output with afterburning applied, if applicable (in kilonewtons);

d) reference pressure ratio;

e) fuel specification reference;
f) fuel hydrogen/carbon ratio;

g) the methods of data acquisition;

h) the method of making corrections for ambient conditions; and

i) the method of data analysis.

3.4.2 Test information

The following information shall be provided for each engine tested for certification purposes at each of the thrust settings specified in 3.1.5.2. The information shall be provided after correction to the reference ambient conditions where applicable:

a) fuel flow (kilograms/second);

b) emission index (grams/kilogram) for each gaseous pollutant;

c) percentage of thrust contributed by afterburning; and

d) measured Smoke Number.

3.4.3 Derived information

3.4.3.1 The following derived information shall be provided for each engine tested for certification purposes:

a) emission rate, i.e. emission index × fuel flow, (grams/second), for each gaseous pollutant;

b) total gross emission of each gaseous pollutant measured over the LTO cycle (grams);

c) values of D_p / F^*_∞ for each gaseous pollutant (grams/kilonewton); and

d) maximum Smoke Number.

3.4.3.2 The characteristic Smoke Number and gaseous pollutant emission levels shall be provided for each engine type for which emissions certification is sought.

Note.— The characteristic level of the Smoke Number or gaseous pollutant emissions is the mean of the values of all the engines tested, measured and corrected to the reference standard engine and reference ambient conditions, divided by the coefficient corresponding to the number of engines tested, as shown in Appendix 6.
APPENDIX 1. MEASUREMENT OF REFERENCE PRESSURE RATIO

1. GENERAL

1.1 Pressure ratio shall be established using a representative engine.

1.2 Reference pressure ratio shall be derived by correlating measured pressure ratio with engine thrust corrected to standard day ambient pressure and entering this correlation at the standard day rated take-off thrust.

2. MEASUREMENT

2.1 Total pressure shall be measured at the last compressor discharge plane and the first compressor front face by positioning at least four probes so as to divide the air flow area into four equal sectors and taking a mean of the four values obtained.

Note. - Compressor discharge total pressure may be obtained from total or static pressure measured at a position as close as possible to the compressor discharge plane. However, the certificating authority may approve alternative means of estimating the compressor discharge total pressure if the engine is so designed that the provision of the probes referred to above is impractical for the emissions test.

2.1 Necessary correlation factors shall be determined during type certification testing using a minimum of one engine and any associated engine component tests and analysis.

2.2 Procedures shall be acceptable to the certificating authority.
APPENDIX 2. SMOKE EMISSION EVALUATION

1. INTRODUCTION AND DEFINITIONS

Note. The procedures specified here are concerned with the acquisition of representative exhaust samples and their transmission to, and analysis by, the emissions measuring system.

1.1 Any equivalent procedures to those contained in this Appendix shall only be allowed after prior application to and approval by the certificating authority.

1.2 Where the following expressions and symbols are used in this Appendix, they have the meanings ascribed to them below:

- **Sample reference size.** The sample mass, 16.2 kg/m² of stained filter area, which if passed through the filter material results in a change of reflectance which gives a value of the SN parameter.

- **Sample size.** A chosen exhaust sample, the magnitude of whose mass (expressed in kilograms per square metre of stained filter surface area) lies in the range prescribed in 2.5.3 h) of this Appendix which, when passed through the filter material, causes a change in reflectance yielding a value for the SN parameter.

- **Sample volume.** The chosen sample volume (expressed in cubic metres) whose equivalent mass, calculated as indicated in 3 of this Appendix, conforms to the above definition of sampling size.

- **SN.** Smoke Number; Dimension less term quantifying smoke emission level based upon the staining of a filter by the reference mass of exhaust gas sample, and rated on a scale of 0 to 100 (see 3 of this Appendix).

- **SN′.** Smoke Number obtained from an individual smoke sample, not necessarily of the sample reference size, as defined in 3 of this Appendix.

- **W.** Mass of individual exhaust gas smoke sample, in kilograms, calculated from the measurements of sample volume, pressure and temperature (see 3 of this Appendix).

2. MEASUREMENT OF SMOKE EMISSIONS

2.1 Sampling probe for smoke emissions

The sampling probe shall meet the following requirements:

a) The probe material with which the exhaust emission sample is in contact shall be stainless steel or any other non-reactive material.

b) If a probe with multiple sampling orifices is used, all sampling orifices shall be of equal diameter. The probe design shall be such that at least 80 per cent of the pressure drop through the probe assembly is taken at the orifices.

c) The number of locations sampled shall not be less than 12.
d) The sampling plane shall be as close to the engine exhaust nozzle exit plane as permitted by considerations of engine performance but in any case shall be within 0.5 nozzle diameters of the exit plane.

e) The applicant shall provide evidence to the certificating authority, by means of detailed traverses, that the proposed probe design and position does provide a representative sample for each prescribed thrust setting.

2.2 Sampling line for smoke emissions

2.2.1 The sample shall be transferred from the probe to the sample collection system via a line of 4.0 to 8.5 mm inside diameter taking the shortest route practicable which shall in no case be greater than 25 m. The line temperature shall be maintained at a temperature between 60°C and 175°C with a stability of ±15°C, except for the distance required to cool the gas from the engine exhaust temperature down to the line control temperature.

2.2.2 Sampling lines shall be as “straight through” as possible. Any necessary bends shall have radii which are greater than 10 times the inside diameter of the lines. The material of the lines shall be such as to discourage build-up of particulate matter or static electricity.

Note. - Stainless steel or carbon loaded grounded polytetrafluoroethylene (PTFE) meet these requirements.

2.3 Smoke analysis system

Note. - The method prescribed herein is based upon the measurement of the reduction in reflectance of a filter when stained by a given mass flow of exhaust sample.

The arrangement of the various components of the system for acquiring the necessary stained filter samples shall be as shown schematically in Figure A2-1. An optional bypass around the volume meter may be installed to facilitate meter reading. The major elements of the system shall meet the following requirements:

a) sample size measurement: a wet or dry positive displacement volume meter shall be used to measure sample volume to an accuracy of ±2 per cent. The pressure and temperature at entry to this meter shall also be measured to accuracies of 0.2 per cent and ±2°C respectively;

b) sample flow rate measurement: the sample flow rate shall be maintained at a value of 14 ±0.5 L/min and the flowmeter for this purpose shall be able to make this measurement with an accuracy of ±5 per cent;

c) filter and holder: the filter holder shall be constructed in corrosion-resistant material and shall have the flow channel configuration shown in Figure A2-1. The filter material shall be Whatman type No. 4, or any equivalent approved by the certificating authority;

d) valves: four valve elements shall be provided as indicated in Figure A2-1:
1) valve A shall be a quick-acting, full-flow, flow diverter enabling the incoming sample to be directed through the measuring filter or around the bypass circuits or shut-off;

Note. Valve A may, if necessary, consist of two valves interlocked to give the requisite function.

2) valves B and C shall be throttling valves used to establish the system flow rate;

3) valve D shall be a shut-off valve to enable the filter holder to be isolated; all valves shall be made of corrosion-resistant material;

e) vacuum pump: this pump shall have a no-flow vacuum capability of –75 kPa with respect to atmospheric pressure; its full-flow rate shall not be less than 28 L/min at normal temperature and pressure;

![Image of a smoke analysis system]

Figure A2-1. Smoke analysis system

f) temperature control: the analyser internal sample line through to the filter holder shall be maintained at a temperature between 60°C and 175°C with a stability of ±15°C;

Note. The objective is to prevent water condensation prior to reaching the filter holder and within it.

g) If it is desired to draw a higher sample flow rate through the probe than through the filter holder, an optional flow splitter may be located between the probe and valve A (Figure A2-1), to dump excess flow. The dump line shall be as close as
possible to probe off-take and shall not affect the ability of the sampling system to maintain the required 80 per cent pressure drop across the probe assembly. The dump flow may also be sent to the CO₂ analyser or complete emissions analysis system.

h) If a flow splitter is used, a test shall be conducted to demonstrate that the flow splitter does not change the smoke level passing to the filter holder. This may be accomplished by reversing the outlet lines from the flow splitter and showing that, within the accuracy of the method, the smoke level does not change.

i) *leak* performance: the subsystem shall meet the requirements of the following test:

1) clamp clean filter material into holder,
2) shut off valve A, fully open valves B, C and D.
3) run vacuum pump for one minute to reach equilibrium conditions;
4) continue to pump and measure the volume flow through the meter over a period of five minutes. This volume shall not exceed 5 L (referred to normal temperature and pressure) and the system shall not be used until this standard has been achieved.

j) *reflectometer*: the measurements of the diffuse reflection density of the filter material shall be by an instrument conforming to the International Organization for Standardization, Standard No. ISO 5-4. The diameter of the reflectometer light beam on the filter paper shall not exceed D/2 nor be less than D/10 where D is the diameter of filter stained spot as defined in Figure A2-1.

2.4 Fuel specifications

The fuel shall meet the specifications of Appendix 4.

2.5 Smoke measurement procedures

2.5.1 Engine operation

2.5.1.1 The engine shall be operated on a static test facility which is suitable and properly equipped for high accuracy performance testing.

2.5.1.2 The tests shall be made at the thrust settings approved by the certificating authority. The engine shall be stabilized at each setting.

2.5.2 Leakage and cleanliness checks

No measurements shall be made until all sample transfer lines and valves are warmed up and stable. Prior to a series of tests the system shall be checked for leakage and cleanliness as follows:

a) *leakage check*: isolate probe and close off end of sample line, perform leakage test as specified in 2.3 h) with the exceptions that valve A is opened and set to “bypass”, valve D is closed and that the leakage limit is 2 L. Restore probe and line interconnection;
b) cleanliness check:

1. open valves B, C and D

2. run vacuum pump and alternately set valve A to “bypass” and “sample” to purge the entire system with clean air for five minutes;

3. set valve A to “bypass”;

4. close valve D and clamp clean filter material into holder. Open valve D;

5. set valve A to “sample” and reset back to “bypass” after 50 kg of air per square metre of filter has passed through the filter material;

6. measure resultant filter spot SN’ as described in paragraph 3 of this Appendix;

7. if this SN’ exceeds 3, the system shall be cleaned (or otherwise rectified) until a value lower than 3 is obtained. The system shall not be used until the requirements of these leakage and cleanliness checks have been met.

2.5.3 Smoke measurement

Smoke measurement shall be made independently of other measurements unless the smoke values so measured are significantly below the limiting values, or unless it can be demonstrated that the smoke values from simultaneous smoke and gaseous emissions measurements are valid, in which case smoke measurements may be made simultaneously with gaseous emissions measurements. In all cases the bend radius requirements for sampling lines detailed in 2.2.2 shall be strictly observed. The smoke analysis subsystem shall be set up and conform to the specifications of 2.3. Referring to Figure A2-1, the following shall be the major operations in acquiring the stained filter specimens:

a) during engine operation with the probe in position, valve A shall not be placed in the no-flow condition, otherwise particulate buildup in the lines might be encouraged;

b) set valve A to “bypass”, close valve D and clamp clean filter into holder. Continue to draw exhaust sample in the bypass setting for at least five minutes while the engine is at or near to the required operating condition, valve C being set to give a flow rate of 14 ±0.5 L/min;

c) open valve D and set valve A to “sample”, use valve B to set flow rate again to value set in b);

d) set valve A to “bypass” and close valve D, clamp clean filter material into the holder;

e) when the engine is stabilized on condition, allow one minute of sample flow with settings as at d);
f) open valve D, set valve A to “sample”, reset flow rate if necessary, and allow chosen sample volume (see h)) to pass, before setting valve A back to “bypass” and close valve D;

g) set aside stained filter for analysis, clamp clean filter into holder;

h) the chosen sample sizes shall be such as to be within the range of 12 kg to 21 kg of exhaust gas per square metre of filter, and shall include samples which are either at the value of 16.2 kg of exhaust gas per square metre of filter or lie above and below that value. The number of samples at each engine operating condition shall not be less than 3 and e) to g) shall be repeated as necessary.

3. **CALCULATION OF SMOKE NUMBER FROM MEASURED DATA**

3.1 The stained filter specimens obtained as outlined in 2.5.3 shall be analysed using a reflectometer as specified in 2.3. The backing material used shall be black with an absolute reflectance of less than 3 per cent. The absolute reflectance reading R_S of each stained filter shall be used to calculate the reduction in reflectance by

$$ SN' = 100(1 - R_S / R_W) $$

where R_W is the absolute reflectance of clean filter material.

3.2 The masses of the various samples shall be calculated by

$$ W = 0.348 PV/T \times 10^{-2} (kg) $$

where P and T are, respectively, the sample pressure in Pascal and the temperature in Kelvin, measured immediately upstream of the volume meter. V is the measured sample volume in cubic metres.

3.2 For each engine condition in the case that the sample sizes range above and below the reference value, the various values of SN' and W shall be plotted as SN' versus $\log W/A$, where A is the filter stain area (m2). Using a least squares straight line fit, the value of SN' for $W/A = 16.2 \, kg/m^2$ shall be estimated and reported as the Smoke Number (SN) for that engine mode. Where sampling at the sample reference size value only is employed, the reported SN shall be the arithmetic average of the various individual values of SN'.

4. **REPORTING OF DATA TO THE CERTIFICATING AUTHORITY**

The measured data shall be reported to the certificating authority. In addition the following data shall be reported for each test:

a) sample temperature;

b) sample pressure;

c) actual sample volume at sampling conditions;

d) actual sample flow rate at sampling conditions; and

e) leak and cleanliness checks substantiation (see 2.5.2).
APPENDIX 3. INSTRUMENTATION AND MEASUREMENT TECHNIQUES FOR GASEOUS EMISSIONS

1. INTRODUCTION

Note: The procedures specified in this appendix are concerned with the acquisition of representative exhaust samples and their transmission to, and analysis by, the emissions measuring system. The procedures do not apply to engines employing afterburning. The methods proposed are representative of the best readily available and most established practice.

Any equivalent procedures to those contained in this appendix shall only be allowed after prior application to and approval by the certificating authority.

2. DEFINITIONS

Where the following expressions are used in this appendix, they have the meanings ascribed to them below:

Accuracy. The closeness with which a measurement approaches the true value established independently.

Air/fuel ratio. The mass rate of airflow through the hot section of the engine divided by the mass rate of fuel flow to the engine.

Calibration gas. A high accuracy reference gas to be used for alignment, adjustment and periodic checks of instruments.

Concentration. The volume fraction of the component of interest in the gas mixture — expressed as volume percentage or as parts per million.

Flame ionization detector. A hydrogen-air diffusion flame detector that produces a signal nominally proportional to the mass-flow rate of hydrocarbons entering the flame per unit of time - generally assumed responsive to the number of carbon atoms entering the flame.

Interference. Instrument response due to presence of components other than the gas (or vapour) that is to be measured.

Noise. Random variation in instrument output not associated with characteristics of the sample to which the instrument is responding, and distinguishable from its drift characteristics.

Non-dispersive infrared analyser. An instrument that by absorption of infrared energy selectively measures specific components.

Parts per million (ppm). The unit volume concentration of a gas per million unit volume of the gas mixture of which it is a part.

Parts per million carbon (ppmC). The mole fraction of hydrocarbon multiplied by 10^6 measured on a methane-equivalence basis. Thus, 1 ppm of methane is indicated as 1 ppmC. To convert ppm concentration of any hydrocarbon to an equivalent ppmC value, multiply ppm concentration by the number of carbon atoms per molecule of the gas. For example, 1 ppm propane translates as 3 ppmC hydrocarbon; 1 ppm hexane as 6 ppmC hydrocarbon.
Reference gas. A mixture of gases of specified and known composition used as the basis for interpreting instrument response in terms of the concentration of the gas to which the instrument is responding.

Repeatability. The closeness with which a measurement upon a given, invariant sample can be reproduced in short-term repetitions of the measurement with no intervening instrument adjustment.

Resolution. The smallest change in a measurement which can be detected.

Response. The change in instrument output signal that occurs with change in sample concentration. Also the output signal corresponding to a given sample concentration.

Stability. The closeness with which repeated measurements upon a given invariant sample can be maintained over a given period of time.

Zero drift. Time-related deviation of instrument output from zero set point when it is operating on gas free of the component to be measured.

Zero gas. A gas to be used in establishing the zero, or no-response, adjustment of an instrument.

3. DATA REQUIRED

3.1 Gaseous emissions

Concentrations of the following emissions shall be determined:

a) Hydrocarbons (HC): a combined estimate of all hydrocarbon compounds present in the exhaust gas.

b) Carbon monoxide (CO).

c) Carbon dioxide (CO₂).

Note.- CO₂ is not a regulated engine emission but its concentration is required for calculation and check purposes.

d) Oxides of nitrogen (NOx): an estimate of the sum of the two oxides, nitric oxide (NO) and nitrogen dioxide (NO₂).

e) Nitric oxide (NO).

3.2 Other information

In order to normalize the emissions measurement data and to quantify the engine test characteristics, the following additional information shall be provided:

a) inlet temperature;

b) inlet humidity;

c) atmospheric pressure;

d) hydrogen/carbon ratio of fuel;

e) other required engine parameters (for example, thrust, rotor speeds, turbine temperatures and gas-generator air flow).
This data shall be obtained either by direct measurement or by calculation, as presented in Attachment F to this appendix.

4. GENERAL ARRANGEMENT OF THE SYSTEM

No desiccants, dryers, water traps or related equipment shall be used to treat the exhaust sample flowing to the oxides of nitrogen and the hydrocarbon analysis instrumentation. Requirements for the various component subsystems are given in 5, but the following list gives some qualifications and variations:

a) it is assumed that each of the various individual subsystems includes the necessary flow control, conditioning and measurement facilities;

b) the necessity for a dump and/or a hot-sample pump will depend on ability to meet the sample transfer time and analysis subsystem sample flow rate requirements. This in turn depends on the exhaust sample driving pressure and line losses. It is considered that these pumps usually will be necessary at certain engine running conditions; and

c) the position of the hot pump, relative to the gas analysis subsystems, may be varied as required. (For example, some HC analysers contain hot pumps and so may be judged capable of being used upstream of the system hot pump.)

Note.—Figure A3-1 is a schematic drawing of the exhaust gas sampling and analytical system and typifies the basic requirements for emissions testing.

5. DESCRIPTION OF COMPONENT PARTS

Note.—A general description and specification of the principal elements in the engine exhaust emissions measurement system follows. Greater detail, where necessary, will be found in Attachments A, B and C to this appendix.

5.1 Sampling system

5.1.1 Sampling probe

The sampling probe shall meet the following requirements:

a) The probe material with which the exhaust emission sample is in contact shall be stainless steel or any other non-reactive material.

b) If a probe with multiple sampling orifices is used, all sampling orifices shall be of equal diameter. The probe design shall be such that at least 80 per cent of the pressure drop through the probe assembly is taken at the orifices.

c) The number of locations sampled shall not be less than 12.

d) The sampling plane shall be as close to the engine exhaust nozzle exit plane as permitted by considerations of engine performance but in any case shall be within 0.5 nozzle diameter of the exit plane.

e) The applicant shall provide evidence to the certificating authority, by means of detailed traverses, that the proposed probe design and position does provide a representative sample for each prescribed thrust setting.
5.1.2 Sampling lines

The sample shall be transferred from the probe to the analysers via a line of 4.0 to 8.5 mm inside diameter, taking the shortest route practicable and using a flow rate such that the transport time is less than 10 seconds. The line shall be maintained at a temperature of 160°C ±15°C (with a stability of ±10°C), except for a) the distance required to cool the gas from the engine exhaust temperature down to the line control temperature, and b) the branch which supplies samples to the CO, CO$_2$, and NO$_x$ analysers. This branch line shall be maintained at a temperature of 65°C ±15°C (with a stability of ±10°C). When sampling to measure HC, CO, CO$_2$ and NO$_x$ components the line shall be constructed in stainless steel or carbon-loaded grounded PTFE.

5.2 HC analyser

The measurement of total hydrocarbon sample content shall be made by an analyser using the heated flame ionization detector (FID), between the electrodes of which passes an ionization current proportional to the mass rate of hydrocarbon entering a hydrogen flame. The analyser shall be deemed to include components arranged to control temperature and flow rates of sample, sample bypass, fuel and diluent gases, and to enable effective span and zero calibration checks.

Note.—An overall specification is given in Attachment A to this appendix.
5.3 **CO and CO\textsubscript{2} analysers**

Non-dispersive infrared analysers shall be used for the measurements of these components, and shall be of the design which utilizes differential energy absorption in parallel reference and sample gas cells, the cell or group of cells for each of these gas constituents being sensitized appropriately. This analysis subsystem shall include all necessary functions for the control and handling of sample, zero and span gas flows. Temperature control shall be that appropriate to whichever basis of measurement, wet or dry, is chosen.

Note.—An overall specification is given in Attachment B to this appendix.

5.4 **NO\textsubscript{x} analyser**

The measurement of NO concentration shall be by the chemiluminescent method in which the measure of the radiation intensity emitted during the reaction of the NO in the sample with added O\textsubscript{3} is the measure of the NO concentration. The NO\textsubscript{2} component shall be converted to NO in a converter of the requisite efficiency prior to measurement. The resultant NO\textsubscript{x} measurement system shall include all necessary flow, temperature and other controls and provide for routine zero and span calibration as well as for converter efficiency checks.

Note.—An overall specification is given in Attachment C to this appendix.

6. **GENERAL TEST PROCEDURES**

6.1 **Engine operation**

6.1.1 The engine shall be operated on a static test facility which is suitable and properly equipped for high accuracy performance testing.

6.1.2 The emissions tests shall be made at the thrust settings prescribed by the certificating authority. The engine shall be stabilized at each setting.

6.2 **Major instrument calibration**

Note.—The general objective of this calibration is to confirm stability and linearity.

6.2.1 The applicant shall satisfy the certificating authority that the calibration of the analytical system is valid at the time of the test.

6.2.2 For the hydrocarbon analyser this calibration shall include checks that the detector oxygen and differential hydrocarbon responses are within the limits specified, as laid down in Attachment A to this appendix. The efficiency of the NO\textsubscript{2}/NO converter shall also be checked and verified to meet the requirements in Attachment C to this appendix.

6.2.3 The procedure for checking the performance of each analyser shall be as follows (using the calibration and test gases as specified in Attachment D to this appendix):
a) introduce zero gas and adjust instrument zero, recording setting as appropriate;

b) for each range to be used operationally, introduce calibration gas of (nominally) 90 per cent range full-scale deflection (FSD) concentration; adjust instrument gain accordingly and record its setting;

c) introduce approximately 30 per cent, 60 per cent, and 90 per cent range FSD concentration and record analyser readings;

d) fit a least squares straight line to the zero, 30 per cent, 60 per cent and 90 per cent concentration points. For the CO and/or CO$_2$ analyser used in their basic form without linearization of output, a least squares curve of appropriate mathematical formulation shall be fitted using additional calibration points if judged necessary. If any point deviates by more than 2 per cent of the full scale value (or ±1 ppm*, whichever is greater) then a calibration curve shall be prepared for operational use.

6.3 Operation

6.3.1 No measurements shall be made until all instruments and sample transfer lines are warmed up and stable and the following checks have been carried out:

1 leakage check: prior to a series of tests the system shall be checked for leakage by isolating the probe and the analysers, connecting and operating a vacuum pump of equivalent performance to that used in the smoke measurement system to verify that the system leakage flow rate is less than 0.4 L/min referred to normal temperature and pressure;

2 cleanliness check: isolate the gas sampling system from the probe and connect the end of the sampling line to a source of zero gas. Warm the system up to the operational temperature needed to perform hydrocarbon measurements. Operate the sample flow pump and set the flow rate to that used during engine emission testing. Record the hydrocarbon analyser reading. The reading shall not exceed 1 per cent of the engine idle emission level or 1 ppm (both expressed as methane), whichever is the greater.

Note 1. It is good practice to back-purge the sampling lines during engine running, while the probe is in the engine exhaust but emissions are not being measured, to ensure that no significant contamination occurs.

Note 2. It is also good practice to monitor the inlet air quality at the start and end of testing and at least once per hour during a test. If levels are considered significant, then they should be taken into account.

6.3.2 The following procedure shall be adopted for operational measurements:

a) apply appropriate zero gas and make any necessary instrument adjustments;

b) apply appropriate calibration gas at a nominal 90 per cent FSD concentration for the ranges to be used, adjust and record gain settings accordingly;
c) when the engine has been stabilized at the required thrust setting, continue to run it and observe pollutant concentrations until a stabilized reading is obtained, which shall be recorded;

d) recheck zero and calibration points at the end of the test and also at intervals not greater than 1 hour during tests. If either has changed by more than ±2 per cent of range FSD, the test shall be repeated after restoration of the instrument to within its specification.

6.4 Carbon balance check

Each test shall include a check that the air/fuel ratio as estimated from the integrated sample total carbon concentration exclusive of smoke, agrees with the estimate based on engine air/fuel ratio within ±15 per cent for the taxi/ground idle mode, and within 10 per cent for all other modes (see 7.1.2).

*Except for the CO$_2$ analyser, for which the value shall be ±100 ppm.

7. CALCULATIONS

7.1 Gaseous emissions

7.1.1 General

The analytical measurements made shall be the concentrations of the various gaseous emissions, as detected at their respective analysers for a range of combustor inlet temperatures (T$_B$) encompassing the four LTO operating modes. Using the calculations of 7.1.2, or the alternative methods defined in Attachment E to this appendix, the measured emissions indices (EI) for each gaseous emission shall be established. To account for deviations from reference atmospheric conditions, the corrections of 7.1.3 shall be applied. Note that these corrections may also be used to account for deviations of the tested engine from the reference standard engine where appropriate (see Appendix 6, paragraph 1 f)). Using combustor inlet temperature (T$_B$) as a correlating parameter, the emissions indices and fuel flow corresponding to the operation at the four LTO operating modes of a reference standard engine under reference day conditions shall then be established using the procedures of 7.2.
7.1.2 Basic parameters

\[EI_p = \frac{\text{mass of } p \text{ produced in g}}{\text{mass of fuel used in kg}} \]

\[EI(CO) = \left(\frac{[CO]}{[CO_2] + [CO] + [HC]} \right) \left(\frac{10^3 M_{CO}}{M_C + (n/m)M_H} \right) (1 + T \frac{P_0}{m}) \]

\[EI(HC) = \left(\frac{[HC]}{[CO_2] + [CO] + [HC]} \right) \left(\frac{10^3 M_{HC}}{M_C + (n/m)M_H} \right) (1 + T \frac{P_0}{m}) \]

\[EI(NO_2) = \left(\frac{[NO_2]}{[CO_2] + [CO] + [HC]} \right) \left(\frac{10^3 M_{NO_2}}{M_C + (n/m)M_H} \right) (1 + T \frac{P_0}{m}) \]

\[\text{Air/fuel ratio } = \left(\frac{M_{AIR}}{M_C + (n/m)M_H} \right) \]

where

\[P_0/m = \frac{2Z - n/m}{4(1 + h_{mol} - [IZ/2])} \]

and

\[Z = \frac{2 - [CO] - ([2/5] - [y/2x]) [HC] + [NO_2]}{[CO_2] + [CO] + [HC]} \]

\[M_{AIR} \quad \text{molecular mass of dry air} = 28.966 \text{ g or, where appropriate, } = (32 R + 28.156 4 S + 44.011 T) \text{ g} \]

\[M_{H} \quad \text{atomic mass of hydrogen} = 1.008 \text{ g} \]

\[M_{C} \quad \text{atomic mass of carbon} = 12.011 \text{ g} \]

\[M_{HC} \quad \text{molecular mass of exhaust hydrocarbons, taken as CH}_4 = 16.043 \text{ g} \]

\[M_{CO} \quad \text{molecular mass of CO} = 28.011 \text{ g} \]

\[M_{NO_2} \quad \text{molecular mass of NO}_2 = 46.008 \text{ g} \]

\[R \quad \text{concentration of O}_2 \text{ in dry air, by volume} = 0.2095 \text{ normally} \]
S concentration of N₂ + rare gases in dry air, by volume = 0.709 2 normally

T concentration of CO₂ in dry air, by volume = 0.000 3 normally

\[\text{[HC]} \] mean concentration of exhaust hydrocarbons vol/vol, expressed as carbon

\[\text{[CO]} \] mean concentration of CO vol/vol, wet

\[\text{[CO₂]} \] mean concentration of CO₂ vol/vol, wet

\[\text{[NO₃]} \] mean concentration of NO₃ vol/vol, wet = [NO + NO₂]

\[\text{[NO]} \] mean concentration of NO in exhaust sample, vol/vol, wet

\[\text{[NO₂]} \] mean concentration of NO₂ in exhaust sample, vol/vol, wet

\[\text{(NO₂)} _c \] mean concentration of NO in exhaust sample after passing through the NO₂/NO converter, vol/vol, wet

\[\text{[NO₃]} _c \] efficiency of NO₂/NO converter

\[h\text{vol} \] humidity of ambient air, vol water/vol dry air

\[m \] number of C atoms in characteristic fuel molecule

\[n \] number of H atoms in characteristic fuel molecule

\[x \] number of C atoms in characteristic exhaust hydrocarbon molecule

\[y \] number of H atoms in characteristic exhaust hydrocarbon molecule

The value of \(n/m \), the ratio of the atomic hydrogen to atomic carbon of the fuel used, is evaluated by fuel type analysis. The ambient air humidity, \(h\text{vol} \), shall be measured at each set condition. In the absence of contrary evidence as to the characterization \((x, y)\) of the exhaust hydrocarbons, the values \(x = 1, y = 4 \) are to be used. If dry or semi-dry CO and CO₂ measurements are to be used then these shall first be converted to the equivalent wet concentration as shown in Attachment E to this appendix, which also contains interference correction formulas for use as required.

7.1.3 Correction of emission indices to reference conditions

7.1.3.1 Corrections shall be made to the measured engine emission indices for all pollutants in all relevant engine modes to account for deviations from the reference atmospheric conditions (ISA at sea level) of the actual test inlet air conditions of temperature and pressure. These corrections may also be used to account for deviations of the tested engine from the reference standard engine where appropriate (see Appendix 6, 1 f)). The reference value for humidity shall be 0.00634 kg water/kg dry air.

Thus, \(EI_{\text{corrected}} = K \times EI_{\text{measured}} \), where the generalized expression for \(K \) is:

\[
K = \left(\frac{P_{Bref}}{P_B} \right)^a \times \left(\frac{FAR_{ref}}{FAR_B} \right)^b \times \exp \left(\frac{[T_{Bref} - T_B]}{c} \right) \times \exp \left(d [h_{mass} - 0.00634] \right)
\]
Kuwait Civil Aviation Safety Regulations

Part 16 – Environmental Protection

Volume - II

<table>
<thead>
<tr>
<th>P_B</th>
<th>Combustor inlet pressure, measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_B</td>
<td>Combustor inlet temperature, measured</td>
</tr>
<tr>
<td>FAR_B</td>
<td>Fuel/air ratio in the combustor</td>
</tr>
<tr>
<td>h_{mass}</td>
<td>Ambient air humidity, kg water/kg dry air</td>
</tr>
<tr>
<td>P_{ref}</td>
<td>ISA sea level pressure</td>
</tr>
<tr>
<td>T_{ref}</td>
<td>ISA sea level temperature</td>
</tr>
</tbody>
</table>

Pressure at the combustor inlet of the engine tested (or the reference engine if the data is corrected to a reference engine) associated with T_B under ISA sea level conditions.

P_{Bref}	Temperature at the combustor inlet under ISA sea level conditions for the engine tested (or the reference engine if the data is to be corrected to a reference engine). This temperature is the temperature associated with each thrust level specified for each mode.
T_{Bref}	Fuel/air ratio in the combustor under ISA sea level conditions for the engine tested (or the reference engine if the data is to be corrected to a reference engine).
FAR_{ref}	Fuel/air ratio in the combustor under ISA sea level conditions for the engine tested (or the reference engine if the data is to be corrected to a reference engine).
a,b,c,d	Specific constants which may vary for each pollutant and each engine type.

The combustor inlet parameters shall preferably be measured but may be calculated from ambient conditions by appropriate formulas.

7.1.3.2 Using the recommended curve fitting technique of 7.2 to relate emission indices to combustor inlet temperature effectively eliminates the exp $\left(\frac{T_{Bref} - T_B}{c}\right)$ term from the generalized equation and for most cases the (FAR_{ref}/FAR_B) term may be considered unity. For the emissions indices of CO and HC many testing facilities have determined that the humidity term is sufficiently close to unity to be eliminated from the expression and that the exponent of the (P_{Bref}/P_B) term is close to unity.

Thus,

$$EI_{(CO)} \text{ corrected} = EI \text{ derived from } (P_B / P_{Bref}) \times EI_{(CO)} v. \ T_B \text{ curve}$$

$$EI_{(HC)} \text{ corrected} = EI \text{ derived from } (P_B / P_{Bref}) \times EI_{(HC)} v. \ T_B \text{ curve}$$

$$EI_{(NO_x)} \text{ corrected} = EI \text{ derived from } EI_{(NO_x)} \times (P_{Bref} / P_B)^{0.5} \times \exp (19 [h_{mass} - 0.00634]) \times EI_{(NO_x)} v. \ T_B \text{ curve}$$

If this recommended method for the CO and HC emissions index correction does not provide a satisfactory correlation, an alternative method using parameters derived from component tests may be used.

Any other methods used for making corrections to CO, HC and NO$_x$ emission indices shall have the approval of the certificating authority.

7.2 Control parameter functions (D_p, F_{oo}, \ldots)

7.2.1 Definitions
The mass of any gaseous pollutant emitted during the reference emissions landing and take-off cycle.

F_{∞} Rated thrust (see Part I, Chapter 1, Definitions)

F_n Thrust at LTO operating mode n (kN)

W_i Fuel mass flow rate of the reference standard engine under ISA sea level conditions (kg/s).

W_{in} Fuel mass flow rate of the reference standard engine under ISA sea level conditions at LTO operating mode n.

The ratio of the mean total pressure at the last compressor discharge plane of the compressor to the mean total pressure at the compressor entry plane when the engine is developing take-off thrust rating at ISA sea level static conditions.

7.2.2 The emissions indices (E_{in}) for each pollutant, corrected to reference atmospheric conditions and, if necessary, to the reference standard engine, (E_{in} (corrected)), shall be obtained for each LTO operating mode. A minimum of three test points shall be required to define the idle mode. The following relationships shall be determined under reference atmospheric conditions for each gaseous emission:

a) between E_{I} (corrected) and T_B; and

b) between W_i and T_B; and

c) between F and T_B;

Note 1- These are illustrated, for example, by Figure A3-2 a), b) and c).

Note 2- The relationships b) and c) may be established directly from engine test data, or may be derived from a validated engine performance model.

7.2.2.1 A reference engine is defined as an engine substantially configured to the production standard of the engine type and with fully representative operating and performance characteristics.

7.2.2.2 The manufacturer shall also supply to the certificating authority all of the necessary engine performance data to substantiate these relationships and for ISA sea level ambient conditions:

a) rated thrust (F_{∞}); and

b) engine pressure ratio (π) at maximum rated thrust.

Note- These are illustrated by Figure A3-2 d).
7.2.3 The estimation of EI (corrected) for each gaseous emission at the four LTO operating modes shall comply with the following general procedure:

a) determine the combustor inlet temperature \(T_B \) (Figure A3-2 c)) at the values of \(F_n \) corresponding to the four LTO operating modes, \(n \), under reference atmospheric conditions;
b) from the EI (corrected)/T_B characteristic (Figure A3-2 a)), determine the E_{I_n} value corresponding to T_B;

c) from the W_f/T_B characteristic (Figure A3-2 b)), determine the W_{f_n} value corresponding to T_B;

d) note the ISA maximum rated thrust and pressure ratio values. These are F_{oo} and respectively (Figure A3-2 d));

e) calculate, for each pollutant $D_b = (E_{I_n}) (W_{f_n}) (t)$ where: t

| time in LTO mode

(minutes)

W_{f_n} fuel mass flow rate (kg/min) is the summation for the set of modes comprising the reference LTO cycle.

7.2.4 While the methodology described above is the recommended method, the certificating authority may accept equivalent mathematical procedures which utilize mathematical expressions representing the curves illustrated if the expression have been derived using an accepted curve fitting technique.

7.3 Exceptions to the proposed procedures

In those cases where the configuration of the engine or other extenuating conditions exist which would prohibit the use of this procedure, the certificating authority, after receiving satisfactory technical evidence of equivalent results obtained by an alternative procedure, may approve an alternative procedure.
ATTACHMENT A TO APPENDIX 3. SPECIFICATION FOR HC ANALYSER

Note 1. As outlined in 5.2 of Appendix 3, the measuring element in this analyser is the flame ionization detector (FID) in which the whole or a representative portion of the sample flow is admitted into a hydrogen-fuelled flame. With suitably positioned electrodes an ionization current can be established which is a function of the mass rate of hydrocarbon entering the flame. It is this current which, referred to an appropriate zero, is amplified and ranged to provide the output response as a measure of the hydrocarbon concentration expressed as ppmC equivalent.

Note 2. See Attachment D for information on calibration and test gases.

1. GENERAL

 Precautions: The performance specifications indicated are generally for analyser full scale. Errors at part scale may be a significantly greater percentage of reading. The relevance and importance of such increases shall be considered when preparing to make measurements. If better performance is necessary, then appropriate precautions shall be taken.

 The instrument to be used shall be such as to maintain the temperature of the detector and sample-handling components at a set point not less than 150°C. The leading specification points shall be as follows, the detector response having been optimized and the instrument generally having stabilized:

 a) Total range: 0 to 5 000 ppmC in appropriate ranges.
 b) Resolution: better than 0.5 per cent of full scale of range used or 0.5 ppmC, whichever is greater.
 c) Repeatability: better than ±1 per cent of full scale of range used, or ±0.5 ppmC, whichever is greater.
 d) Stability: better than ±2 per cent of full scale of range used or ±1.0 ppmC, whichever is greater, in a period of 1 hour.
 e) Zero drift: less than ±1 per cent of full scale of range used or ±0.5 ppmC, whichever is greater, in a period of 1 hour.
 f) Noise: 0.5 Hz and greater, less than ±1 per cent of full scale of range used or ±0.5 ppmC, whichever is greater.
 g) Response time: shall not exceed 10 seconds from inlet of the sample to the analysis system, to the achievement of 90 per cent of the final reading.
 h) Linearity: response with propane in air shall be linear for each range within ±2 per cent of full scale, otherwise calibration corrections shall be used.

2. SYNERGISTIC EFFECTS

 Note. In application there are two aspects of performance which can affect the accuracy of measurement:

 a) the oxygen effect (whereby differing proportions of oxygen present in the sample give differing indicated hydrocarbon concentration for constant actual HC concentrations); and

 b) the relative hydrocarbon response (whereby there is a different response to the
same sample hydrocarbon concentrations expressed as equivalent ppmC, dependent on the class or admixture of classes of hydrocarbon compounds).

The magnitude of the effects noted above shall be determined as follows and limited accordingly.

Oxygen response: measure the response with two blends of propane, at approximately 500 ppmC concentration known to a relative accuracy of ±1 per cent, as follows:

a) propane in 10 ±1 per cent O₂, balance N₂
b) propane in 21 ±1 per cent O₂, balance N₂

If \(R_1 \) and \(R_2 \) are the respective normalized responses then \((R_1 - R_2) \) shall be less than 3 per cent of \(R_1 \).

Differential hydrocarbon response: measure the response with four blends of different hydrocarbons in air, at concentrations of approximately 500 ppmC, known to a relative accuracy of ±1 per cent, as follows:

a) propane in zero air
b) propylene in zero air
c) toluene in zero air
d) n-hexane in zero air.

If \(R_a \), \(R_b \), \(R_c \) and \(R_d \) are, respectively, the normalized responses (with respect to propane), then \((R_a - R_b) \), \((R_a - R_c) \) and \((R_a - R_d) \) shall each be less than 5 per cent of \(R_a \).

3. **OPTIMIZATION OF DETECTOR RESPONSE AND ALIGNMENT**

3.1 The manufacturer’s instructions for initial setting up procedures and ancillary services and supplies required shall be implemented, and the instrument allowed to stabilize. All setting adjustments shall involve iterative zero checking, and correction as necessary. Using as sample a mixture of approximately 500 ppmC of propane in air, the response characteristics for variations first in fuel flow and then, near an optimum fuel flow, for variations in dilution air flow to select its optimum shall be determined. The oxygen and differential hydrocarbon responses shall then be determined as indicated above.

3.2 The linearity of each analyser range shall be checked by applying propane in air samples at concentrations of approximately 30, 60 and 90 per cent of full scale. The maximum response deviation of any of these points from a least squares straight line (fitted to the points and zero) shall not exceed ±2 per cent of full scale value. If it does, a calibration curve shall be prepared for operational use.
ATTACHMENT B TO APPENDIX 3. SPECIFICATION FOR CO AND CO2 ANALYSERS

Note 1. Paragraph 5.3 of Appendix 3 summarizes the characteristics of the analysis subsystem to be employed for the individual measurements of CO and CO\(_2\) concentrations in the exhaust gas sample. The instruments are based on the principle of non-dispersive absorption of infrared radiation in parallel reference and sample gas cells. The required ranges of sensitivity are obtained by use of stacked sample cells or changes in electronic circuitry or both. Interferences from gases with overlapping absorption bands may be minimized by gas absorption filters and/or optical filters, preferably the latter.

Note 2. See Attachment D for information on calibration and test gases.

Precautions: The performance specifications indicated are generally for analyser full scale. Errors at part scale may be a significantly greater percentage of reading. The relevance and importance of such increases shall be considered when preparing to make measurements. If better performance is necessary, then appropriate precautions shall be taken.

The principal performance specification shall be as follows:

CO Analyser

a) **Total range:** 0 to 2 500 ppm in appropriate ranges.

b) **Resolution:** better than 0.5 per cent of full scale of range used or 1 ppm, whichever is greater.

c) **Repeatability:** better than ±1 per cent of full scale of range used, or ±2 ppm, whichever is greater.

d) **Stability:** better than ±2 per cent of full scale of range used or ±2 ppm, whichever is greater, in a period of 1 hour.

e) **Zero drift:** less than ±1 per cent of full scale of range used or ±2 ppm, whichever is greater, in a period of 1 hour.

f) **Noise:** 0.5 Hz and greater, less than ±1 per cent of full scale of range used or ±1 ppm, whichever is greater.

g) **Interferences:** to be limited with respect to indicated CO concentration as follows:

1) less than 500 ppm/per cent ethylene concentration

2) less than 2 ppm/per cent CO\(_2\) concentration

3) less than 2 ppm/per cent water vapour.

If the interference limitation(s) for CO\(_2\) and/or water vapour cannot be met, appropriate correction factors shall be determined, reported and applied.

Note: It is recommended, as consistent with good practice, that such correction procedures be adopted in all cases.

CO\(_2\) Analyser

a) **Total range:** 0 to 10 per cent in appropriate ranges.

b) **Resolution:** better than 0.5 per cent of full scale of range used or 100 ppm, whichever is greater.

c) **Repeatability:** better than ±1 per cent of full scale of range used or ±100 ppm,
whichever is greater.

d) **Stability:** better than ±2 per cent of full scale of range used or ±100 ppm, whichever is greater, in a period of 1 hour.

e) **Zero drift:** less than ±1 per cent of full scale of range used or ±100 ppm, whichever is greater, in a period of 1 hour.

f) **Noise:** 0.5 Hz and greater, less than ±1 per cent of full scale of range used or ±100 ppm, whichever is greater.

g) The effect of oxygen \((O_2) \) on the \(CO_2 \) analyser response shall be checked. For a change from 0 per cent \(O_2 \) to 21 per cent \(O_2 \), the response of a given \(CO_2 \) concentration shall not change by more than 2 per cent of reading. If this limit cannot be met an appropriate correction factor shall be applied.

Note. It is recommended, as consistent with good practice, that such correction procedures be adopted in all cases.

CO and \(CO_2 \) Analysers

a) **Response time:** shall not exceed 10 seconds from inlet of the sample to the analysis system, to the achievement of 90 per cent of the final reading.

b) **Sample temperature:** the normal mode of operation is for analysis of the sample in its (untreated) “wet” condition. This requires that the sample cell and all other components in contact with the sample in this subsystem be maintained at a temperature of not less than 50°C, with a stability of ±2°C. The option to measure \(CO \) and \(CO_2 \) on a dry basis (with suitable water traps) is allowed, in which case unheated analysers are permissible and the interference limits for \(H_2O \) vapour removed, and subsequent correction for inlet water vapour and water of combustion is required.

c) **Calibration curves:**

1) Analysers with a linear signal output characteristic shall be checked on all working ranges using calibration gases at known concentrations of approximately 0, 30, 60 and 90 per cent of full scale. The maximum response deviation of any of these points from a least squares straight line, fitted to the points and the zero reading, shall not exceed ±2 per cent of the full scale value. If it does then a calibration curve shall be prepared for operational use.

2) Analysers with a non-linear signal output characteristic, and those that do not meet the requirements of linearity given above, shall have calibration curves prepared for all working ranges using calibration gases at known concentrations of approximately 0, 30, 60 and 90 per cent of full scale. Additional mixes shall be used, if necessary, to define the curve shape properly.
ATTACHMENT C TO APPENDIX 3. SPECIFICATION FOR NO\textsubscript{x} ANALYSER

Note.- See Attachment D for information on calibration and test gases.

1. As indicated in 5.4 of Appendix 3, the measurement of the oxides of nitrogen concentration shall be by the chemiluminescent technique in which radiation emitted by the reaction of NO and O\textsubscript{3} is measured. This method is not sensitive to NO\textsubscript{2} and therefore the sample shall be passed through a converter in which NO\textsubscript{2} is converted to NO before the measurement of total NO\textsubscript{x} is made. Both the original NO and the total NO\textsubscript{x} concentrations shall be recorded. Thus by difference, a measure of the NO\textsubscript{2} concentration shall be obtained.

2. The instrument to be used shall be complete with all necessary flow control components, such as regulators, valves, flowmeters, etc. Materials in contact with the sample gas shall be restricted to those which are resistant to attack by oxides of nitrogen, such as stainless steel, glass, etc. The temperature of the sample shall everywhere be maintained at values, consistent with the local pressures, which avoid condensation of water.

Precautions: The performance specifications indicated are generally for analyser full scale. Errors at part scale may be a significantly greater percentage of reading. The relevance and importance of such increases shall be considered when preparing to make measurements. If better performance is necessary, then appropriate precautions shall be taken.

3. The principal performance specification, determined for the instrument operated in an ambient temperature stable to within 2°C, shall be as follows:

 a) **Total range:** 0 to 2 500 ppm in appropriate ranges.

 b) **Resolution:** better than 0.5 per cent of full scale of range used or 1 ppm, whichever is greater.

 c) **Repeatability:** better than ±1 per cent of full scale of range used, or ±1 ppm, whichever is greater.

 d) **Stability:** better than ±2 per cent of full scale of range used or ±1 ppm, whichever is greater, in a period of 1 hour.

 e) **Zero drift:** less than ±1 per cent of full scale of range used or ±1 ppm, whichever is greater, in a period of 1 hour.

 f) **Noise:** 0.5 Hz and greater, less than ±1.0 per cent of full scale of range used or ±1 ppm, whichever is greater, in a period of 2 hours.

 g) **Interference:** suppression for samples containing CO\textsubscript{2} and water vapour, shall be limited as follows:

 1) less than 0.05 per cent reading/per cent CO\textsubscript{2} concentration;
2) less than 0.1 per cent reading/per cent water vapour concentration.

If the interference limitation(s) for CO₂ and/or water vapour cannot be met, appropriate correction factors shall be determined, reported and applied.

Note.- It is recommended, as consistent with good practice, that such correction procedures be adopted in all cases.

h) **Response time**: shall not exceed 10 seconds from inlet of the sample to the analysis system to the achievement of 90 per cent of the final reading.

i) **Linearity**: better than ±2 per cent of full scale of range used or ±2 ppm, whichever is greater.

j) **Converter**: this shall be designed and operated in such a matter as to reduce NO₂ present in the sample to NO. The converter shall not affect the NO originally in the sample.

The converter efficiency shall not be less than 90 per cent.

This efficiency value shall be used to correct the measured sample NO₂ value (i.e. \([\text{NO}_2]_c - [\text{NO}]\)) to that which would have been obtained if the efficiency had not been 100 per cent.
ATTACHMENT D TO APPENDIX 3. CALIBRATION AND TEST GASES

Table of calibration gases

<table>
<thead>
<tr>
<th>Analyser</th>
<th>Gas</th>
<th>Accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>propane in zero air</td>
<td>±2 per cent or ±0.05 ppm**</td>
</tr>
<tr>
<td>CO₂</td>
<td>CO₂ in zero air</td>
<td>±2 per cent or ±100 ppm**</td>
</tr>
<tr>
<td>CO</td>
<td>CO in zero air</td>
<td>±2 per cent or ±2 ppm**</td>
</tr>
<tr>
<td>NOₓ</td>
<td>NOₓ in zero nitrogen</td>
<td>±2 per cent or ±1 ppm**</td>
</tr>
</tbody>
</table>

* Taken over the 95 per cent confidence interval.

** Whichever is greater.

The above gases are required to carry out the routine calibration of analysers during normal operational use.

Table of test gases

<table>
<thead>
<tr>
<th>Analyser</th>
<th>Gas</th>
<th>Accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>propane in 10 ±1 per cent O₂</td>
<td>±1 per cent</td>
</tr>
<tr>
<td></td>
<td>balance zero nitrogen</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>propane in 21 ±1 per cent O₂</td>
<td>±1 per cent</td>
</tr>
<tr>
<td></td>
<td>balance zero nitrogen</td>
<td></td>
</tr>
<tr>
<td>HC</td>
<td>propylene in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>toluene in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>n-hexane in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>propane in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>CO₂</td>
<td>CO₂ in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>CO₂</td>
<td>CO₂ in zero nitrogen</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>CO</td>
<td>CO in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>NOₓ</td>
<td>NO in zero nitrogen</td>
<td>±1 per cent</td>
</tr>
</tbody>
</table>

* Taken over the 95 per cent confidence interval.

The above gases are required to carry out the tests of Attachments A, B and C.
Carbon monoxide and carbon dioxide calibration gases may be blended singly or as dual component mixtures. Three component mixtures of carbon monoxide, carbon dioxide and propane in zero air may be used, provided the stability of the mixture is assured.

Zero gas as specified for the CO, CO\textsubscript{2} and HC analysers shall be zero air (which includes “artificial” air with 20 to 22 per cent O\textsubscript{2} blended with N\textsubscript{2}). For the NO\textsubscript{x} analyser zero nitrogen shall be used as the zero gas. Impurities in both kinds of zero gas shall be restricted to be less than the following concentrations:

- 1 ppm C
- 1 ppm CO
- 100 ppm CO\textsubscript{2}
- 1 ppm NO\textsubscript{x}

The applicant shall ensure that commercial gases, as supplied, do in fact meet this specification, or are so specified by the vendor.
ATTACHMENT E TO APPENDIX 3. THE CALCULATION OF THE EMISSIONS PARAMETERS — BASIS, MEASUREMENT CORRECTIONS AND ALTERNATIVE NUMERICAL METHOD

1. SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>air/fuel ratio, the ratio of the mass flow rate of dry air to that of the fuel emission index; (10^3 \times) mass flow rate of gaseous emission product in exhaust per unit mass flow rate of fuel</td>
</tr>
<tr>
<td>EI</td>
<td>emission index; (10^3 \times) mass flow rate of gaseous emission product in exhaust per unit mass flow rate of fuel</td>
</tr>
<tr>
<td>K</td>
<td>ratio of concentration measured wet to that measured dry (after cold trap)</td>
</tr>
<tr>
<td>L, L</td>
<td>analyser interference coefficient for interference by CO2</td>
</tr>
<tr>
<td>M, M</td>
<td>analyser interference coefficient for interference by H2O</td>
</tr>
<tr>
<td>MAIR</td>
<td>molecular mass of dry air = 28.966 g or, where appropriate, = ((32 \ R + 28.156 \ 4 \ S + 44.011 \ T) \ g)</td>
</tr>
<tr>
<td>MCO</td>
<td>molecular mass of CO = 28.011 g</td>
</tr>
<tr>
<td>MHC</td>
<td>molecular mass of exhaust hydrocarbon, taken as CH4 = 16.043 g</td>
</tr>
<tr>
<td>MN2O</td>
<td>molecular mass of NO2 = 46.008 g</td>
</tr>
<tr>
<td>MC</td>
<td>atomic mass of carbon = 12.011 g</td>
</tr>
<tr>
<td>MH</td>
<td>atomic mass of hydrogen = 1.008 g</td>
</tr>
<tr>
<td>P1</td>
<td>number of moles of CO2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P2</td>
<td>number of moles of N2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P3</td>
<td>number of moles of O2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P4</td>
<td>number of moles of H2O in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P5</td>
<td>number of moles of CO in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P6</td>
<td>number of moles of CxHy in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P7</td>
<td>number of moles of NO2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P8</td>
<td>number of moles of NO in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P0</td>
<td>number of moles of air per mole of fuel in initial air/fuel mixture</td>
</tr>
<tr>
<td>Z</td>
<td>symbol used and defined in 3.4</td>
</tr>
<tr>
<td>[CO2]</td>
<td>mean concentration of CO2 in exhaust sample, vol/vol</td>
</tr>
<tr>
<td>[CO]</td>
<td>mean concentration of CO in exhaust sample, vol/vol</td>
</tr>
<tr>
<td>[HC]</td>
<td>mean concentration of HC in exhaust sample, vol C/vol</td>
</tr>
</tbody>
</table>
2. **BASIS OF CALCULATION OF EI AND AFR PARAMETERS**

2.1 It is assumed that the balance between the original fuel and air mixture and the resultant state of the exhaust emissions as sampled can be represented by the following equation:

\[C_m H_n + P0[R(O2) + S(N2) + T(CO2) + h_{vol}(H2O)] = P1(CO2) + P2(N2) + P3(O2) + P4(H2O) + P5(CO) + P6(CxHy) + P7(NO2) + P8(NO) \]

from which the required parameters can, by definition, be expressed as:

\[
\text{EI}(\text{CO}) = P3 \left(\frac{10^3 M_{CO}}{mM_C + nM_H} \right)
\]

\[
\text{EI}(\text{HC}) = xP6 \left(\frac{10^3 M_{HC}}{mM_C + nM_H} \right) \text{ expressed as methane equivalent}
\]

\[
\text{EI}(\text{NO_x}) = (P2 + P6) \left(\frac{10^3 M_{NO_x}}{mM_C + nM_H} \right) \text{ expressed as NO_x equivalent}
\]

\[
\text{AFR} = P6 \left(\frac{M_{IR}}{mM_C + nM_H} \right)
\]
2.2 Values for fuel hydrocarbon composition \((m, n)\) are assigned by fuel specification or analysis. If only the ratio \(n/m\) is so determined, the value \(m = 12\) may be assigned. The mole fractions of the dry air constituents \((R, S, T)\) are normally taken to be the recommended standard values but alternative values may be assigned, subject to the restriction \(R + S + T = 1\) and the approval of the certificating authority.

2.3 The ambient air humidity, \(h_{\text{vol}}\), is as measured at each test condition. It is recommended that, in the absence of contrary evidence as to the characterization \((x, y)\) of the exhaust hydrocarbon, values of \(x = 1\) and \(y = 4\) are assigned.

2.4 Determination of the remaining unknowns requires the solution of the following set of linear simultaneous equations, where (1) to (4) derive from the fundamental atomic conservation relationships and (5) to (9) represent the gaseous product concentration relationships.

\[
m + TP_0 = P_1 + P_5 + xP_6 \quad \cdots (1)
\]
\[
n + 2h_{\text{vol}}P_0 = 2P_4 + yP_6 \quad \cdots (2)
\]
\[
(2R + 2T + h_{\text{vol}})P_0 = 2P_1 + 2P_3 + P_4 + P_5 + 2P_7 + P_8 \quad \cdots \cd - Page 49 of 83
\[[\text{CO}]_m P_{T} + LP_1 + MP_4 = P_5 \] (6A)

\[[\text{NO}_x]_{cm} (P_{T} + L P_1 + MP_4) = P_7 + P_8 \] (8A)

\[[\text{NO}]_m (P_{T} + L P_1 + MP_4) = P_8 \] (9A)

2.6 The option to measure CO2 and CO concentrations on a dry or partially dry sample basis, that is, with a sample humidity reduced to \(h_d \), requires the use of modified conditional equations as follows:

\[[\text{CO}_2]_d (P_{T} - P_4) (1 + h_d) = P_1 \] (5A)

and

\[[\text{CO}]_d (P_{T} - P_4) (1 + h_d) = P_5 \]

However, the CO analyser may also be subject to interference effects as described in 2.5 and so the complete alternative CO measurement concentration equation becomes

\[[\text{CO}]_{md} (P_{i} - P_4) (1 + h_d) + LP_1 + M_h (P_{T} - P_4) = P_5 \] (6B)

3. ANALYTICAL FORMULATIONS

3.1 General

Equations (1) to (10) can be reduced to yield the analytical formulations for the EI and AFR parameters, as given in 7.1 to this appendix. This reduction is a process of progressive elimination of the roots \(P_0, P_1 \) through \(P_8, P_{T} \), making the assumptions that all concentration measurements are of the “wet” sample and do not require interference corrections or the like. In practice, the option is often chosen to make the CO2 and CO concentration measurements on a “dry” or “semi-dry” basis; also it is often found necessary to make interference corrections. Formulations for use in these various circumstances are given in 3.2, 3.3 and 3.4.

3.2 Equation for conversion of dry concentration measurements to wet basis

Concentration wet = \(K \times \) concentration dry; that is,

\[[\] = K[\]_d \]

The following expression for \(K \) applies when CO and CO2 are determined on a “dry” basis:

\[\kappa \{4 \frac{(n/m)}{T} \{ n/m \ T \ 2 h_{vol} \ \} \{[\text{NO}_2] \ \{2[H]/x) \ (2 \ h_{vol} \ y/x \ [n/m] \ [HC]\} \ (1 \ h_d) \ (2 \ h) \ \{2 \ (n/m) \ (1 \ h_d) \{[\text{CO}_2]_d [\text{CO}]_d\} \ ([n/m] \ T \ 2 h) \ (1 \ [1 \ h_d] \ [\text{CO}]_d) \]

\]
3.3 Interference corrections

The measurements of CO and/or NO\textsubscript{x} and NO may require corrections for interference by the sample CO\textsubscript{2} and water concentrations before use in the above analytical equations. Such corrections can normally be expressed in the following general ways:

\[[\text{CO}] = [\text{CO}]_m + L[\text{CO}_2] + M[\text{H}_2\text{O}] \]

\[[\text{CO}]_d = [\text{CO}]_m + L[\text{CO}_2] + M[\text{H}_2\text{O}] \]

\[[\text{NO}] = [\text{NO}]_m (1 + L [\text{CO}_2] + M [\text{H}_2\text{O}]) \]

\[[\text{NO}_2] = ([\text{NO}_2]_m - [\text{NO}]_m) (1 + L [\text{CO}_2] + M [\text{H}_2\text{O}]) \]

3.4 Equation for estimation of sample water content

Water concentration in sample

\[[\text{H}_2\text{O}] = \left(\frac{[\text{H}_2\text{O}] + h_{\text{vol}} \left[\frac{P_0}{m} \left([\text{CO}_2] + [\text{CO}] + [\text{HC}] \right) \right]}{1 + T \left(\frac{P_0}{m} \right)} \right) - \left(\frac{v}{2x} \right) [\text{HC}] \]

where

\[P_0/m \approx \frac{2Z - [\text{CO} - (2x)] - [\text{HC}]}{4(1 + h_{\text{vol}} - [7Z/2])} \]

and

\[Z = \frac{2 - [\text{CO}] - (2x) - [\text{HC}] + [\text{NO}_2]}{[\text{CO}_2] + [\text{CO}] + [\text{HC}]} \]

It should be noted that this estimate is a function of the various analyses concentration readings, which may themselves require water interference correction. For better accuracy an iterative procedure is required in these cases with successive recalculation of the water concentration until the requisite stability is obtained. The use of the alternative, numerical solution methodology (4) avoids this difficulty.

4. ALTERNATIVE METHODOLOGY - NUMERICAL SOLUTION

4.1 As an alternative to the analytical procedures summarized in 3, it is possible to obtain readily the emissions indices, fuel/air ratio, corrected wet concentrations, etc., by a numerical solution of equations (1) to (10) for each set of measurements, using a digital computer.

4.2 In the equation set (1) to (10) the actual concentration measurements are substituted using whichever of the alternative equations (5A), (6A), etc. applies for the particular measuring system, to take account of interference corrections and/or dried sample measurements.

4.3 Suitable simple two-dimensional array equation-solving computer programmes are widely available and their use for this purpose is convenient and flexible, allowing ready incorporation and identification of any sample drying options and interference or other corrections.
ATTACHMENT F TO APPENDIX 3. SPECIFICATIONS FOR ADDITIONAL DATA

As required in 3.2 of Appendix 3, in addition to the measured sample constituent concentrations, the following data shall also be provided:

a) inlet temperature: measured as the total temperature at a point within one diameter of the engine intake plane to an accuracy of ±0.5°C;

b) inlet humidity (kg water/kg dry air): measured at a point within 50 metres of the intake plane ahead of the engine to an accuracy of:
 1) ±5 per cent of reading for ambient air humidity greater than or equal to 0.00634 kg water/kg dry air; or
 2) ±0.000317 kg water/kg dry air of reading for ambient air humidity less than 0.00634 kg water/kg dry air;

c) atmospheric pressure: measured within 1 km of the engine test location and corrected as necessary to the test stand altitude to an accuracy of ±100 Pa;

d) fuel mass flow: by direct measurement to an accuracy of ±2 per cent;

e) fuel H/C ratio: defined as $\frac{n}{m}$, where C_mH_n is the equivalent hydrocarbon representation of the fuel used in the test and evaluated by reference to the engine fuel type analysis;

f) engine parameters:
 1) thrust: by direct measurement to an accuracy of ±1 per cent at take-off power and ±5 per cent at the minimum thrust used in the certification test, with linear variation between these points;
 2) rotation speed(s): by direct measurement to an accuracy of at least ±0.5 per cent;
 3) gas generator airflow: determined to an accuracy of ±2 per cent by reference to engine performance calibration.

The parameters a), b), d) and f) shall be determined at each engine emissions test setting, while c) shall be determined at intervals of not less than 1 hour over a period encompassing that of the emissions tests.
APPENDIX 4. SPECIFICATION FOR FUEL TO BE USED IN AIRCRAFT TURBINE ENGINE EMISSION TESTING

The fuel shall meet the specifications of this Appendix 4, unless a deviation and any necessary corrections have been agreed upon by the certificating authority. Additives used for the purpose of smoke suppression (such as organometallic compounds) shall not be present.

<table>
<thead>
<tr>
<th>Property</th>
<th>Allowable range of values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density kg/m³ at 15°C</td>
<td>780 – 820</td>
</tr>
<tr>
<td>Distillation temperature, °C</td>
<td></td>
</tr>
<tr>
<td>10% boiling point</td>
<td>155 – 201</td>
</tr>
<tr>
<td>Final boiling point</td>
<td>235 – 285</td>
</tr>
<tr>
<td>Net heat of combustion, MJ/kg</td>
<td>42.86 – 43.50</td>
</tr>
<tr>
<td>Aromatics, volume %</td>
<td>15 – 23</td>
</tr>
<tr>
<td>Naphthalenes, volume %</td>
<td>1.0 – 3.5</td>
</tr>
<tr>
<td>Smoke point, mm</td>
<td>20 – 28</td>
</tr>
<tr>
<td>Hydrogen, mass %</td>
<td>13.4 – 14.3</td>
</tr>
<tr>
<td>Sulphur, mass %</td>
<td>less than 0.3%</td>
</tr>
<tr>
<td>Kinematic viscosity at –20°C, mm²/s</td>
<td>2.5 – 6.5</td>
</tr>
</tbody>
</table>
APPENDIX 5. INSTRUMENTATION AND MEASUREMENT TECHNIQUES FOR GASEOUS EMISSIONS FROM AFTERBURNING GAS TURBINE ENGINES

1. INTRODUCTION

Note. The procedures specified in this appendix are concerned with the acquisition of representative exhaust samples and their transmission to, and analysis by, the emissions measuring system. These procedures only apply when afterburning is employed. The methods proposed are representative of the best readily available and most established modern practice. The need to correct for ambient conditions is recognized and a method will be specified when one becomes available. Meanwhile any correction methods used when afterburning is employed should be approved by the certificating authority.

Variations in the procedure contained in this appendix shall only be allowed after prior application to and approval by the certificating authority.

2. DEFINITIONS

Where the following expressions are used without further explanation in this appendix, they have the meanings ascribed to them below:

Accuracy. The closeness with which a measurement approaches the true value established independently.

Calibration gas. A high accuracy reference gas to be used for alignment, adjustment and periodic checks of instruments.

Concentration. The volume fraction of the component of interest in the gas mixture — expressed as volume percentage or as parts per million.

Flame ionization detector. A hydrogen-air diffusion flame detector that produces a signal nominally proportional to the mass-flow rate of hydrocarbons entering the flame per unit of time — generally assumed responsive to the number of carbon atoms entering the flame.

Interference. Instrument response due to presence of components other than the gas (or vapour) that is to be measured.

Noise. Random variation in instrument output not associated with characteristics of the sample to which the instrument is responding, and distinguishable from its drift characteristics.

Non-dispersive infrared analyser. An instrument that by absorption of infrared energy selectively measures specific components.

Parts per million (ppm). The unit volume concentration of a gas per million unit volume of the gas mixture of which it is a part.

Parts per million carbon (ppmC). The mole fraction of hydrocarbon multiplied by 10^6 measured on a methane-equivalence basis. Thus, 1 ppm of methane is indicated as 1 ppmC. To convert ppm concentration of any hydrocarbon to an equivalent ppmC value, multiply ppm concentration by the number of carbon atoms per molecule of the gas. For example, 1 ppm propane translates as 3 ppmC hydrocarbon; 1 ppm hexane as 6 ppmC hydrocarbon.
Plume. Total external engine exhaust flow, including any ambient air with which the exhaust mixes.

Reference gas. A mixture of gases of specified and known composition used as the basis for interpreting instrument response in terms of the concentration of the gas to which the instrument is responding.

Repeatability. The closeness with which a measurement upon a given, invariant sample can be reproduced in short-term repetitions of the measurement with no intervening instrument adjustment.

Resolution. The smallest change in a measurement which can be detected.

Response. The change in instrument output signal that occurs with change in sample concentration. Also the output signal corresponding to a given sample concentration.

Stability. The closeness with which repeated measurements upon a given invariant sample can be maintained over a given period of time.

Zero drift. Time-related deviation of instrument output from zero set point when it is operating on gas free of the component to be measured.

Zero gas. A gas to be used in establishing the zero, or no response, adjustment of an instrument.

3. **DATA REQUIRED**

3.1 **Gaseous emissions**

Concentrations of the following emissions shall be determined:

a) Hydrocarbons (HC): a combined estimate of all hydrocarbon compounds present in the exhaust gas.

b) Carbon monoxide (CO).

c) Carbon dioxide (CO₂).

Note. CO₂ is not considered a pollutant but its concentration is required for calculation and check purposes.

d) Oxides of nitrogen (NOx): an estimate of the sum of the two oxides, nitric oxide (NO) and nitrogen dioxide (NO₂).

e) Nitric oxide (NO).

3.2 **Other information**

In order to normalize the emissions measurement data and to quantify the engine test characteristics, other information in addition to the requirements of Chapter 3, 3.4 shall be provided as follows:

– inlet temperature;
— inlet humidity;
— atmospheric pressure;
— wind vectors relative to engine exhaust axis;
— hydrogen/carbon ratio of fuel;
— engine installation details;
— other required engine parameters (for example, thrust, rotor speeds, turbine temperatures);
— pollutant concentration data and statistical validation parameters.

This data shall be obtained either by direct measurement or by calculation, as presented in Attachment F to this appendix.

4. **GENERAL ARRANGEMENT OF THE SYSTEM**

Owing to the reactive nature of the exhaust plume from engines using afterburning, it is necessary to ensure that the measured emissions do in fact correspond to those actually emitted into the surrounding atmosphere. This is achieved by sampling the plume sufficiently far downstream from the engine that the exhaust gases have cooled to a temperature where reactions have ceased. No desiccants, dryers, water traps or related equipment shall be used to treat the exhaust sample flowing to the oxides of nitrogen and the hydrocarbon analysis instrumentation. Requirements for the various component subsystems are given in 5, but the following list gives some qualifications and variations:

a) it is assumed that each of the various individual subsystems includes the necessary flow control, conditioning and measurement facilities;
b) the necessity for a dump and/or a hot-sample pump will depend on the ability to meet the sample transfer time and analysis subsystem sample flow rate requirements. This in turn depends on the exhaust sample-driving pressure and line losses. It is considered that these pumps usually will be necessary at certain engine running conditions; and
c) the position of the hot pump, relative to the gas analysis subsystems, may be varied as required. (For example, some HC analysers contain hot pumps and so may be judged capable of being used upstream of the system hot pump.)

Note.—Figures A5-1 and A5-2 are schematic drawings of the exhaust gas sampling and analytical system and typify the basic requirements for emissions testing.

5. **DESCRIPTION OF COMPONENT PARTS**

Note.— A general description and specification of the principal elements in the engine exhaust emissions measurement system follows. Greater detail, where necessary, will be found in Attachments A, B and C to this appendix.
5.1 Sampling system

5.1.1 Sampling probe

a) The probe shall be constructed so that individual samples can be withdrawn at various locations across a diameter of the plume. Mixed samples shall not be permitted.

b) The material with which the sample is in contact shall be stainless steel and its temperature shall be maintained at a value not less than 60°C.

Figure A5-1. Exhaust gas sampling system, schematic

Figure A5-2. Sample transfer and analysis system, schematic
c) The sampling plane shall be perpendicular to the projected engine nozzle centre line, and shall be situated as close as possible to a position 18 nozzle diameters from the nozzle exit plane, consistent with 7.1.2, but in no case greater than 25 nozzle diameters. The nozzle exit diameter shall be for the maximum engine power condition. Between and including exit and sampling planes there shall be an unobstructed region of at least 4 nozzle exit diameters in radial distance about the project engine nozzle centre line.

d) The minimum number of sampling points shall be equal to 11. The measurement plane, located at a distance \(X \) from the engine shall be divided into three sections demarcated by circles centred around the exhaust stream axis with radii

\[
R_1 = 0.05X \\
R_2 = 0.09X
\]

and a minimum of 3 samples shall be taken from each section. The difference between the number of samples in each section must be less than 3. The sample taken at the most remote distance from the axis shall be from a point located at a radius of between 0.11\(X \) and 0.16\(X \).

5.1.2 Sampling lines

The sample shall be transferred from the probe to the analysers via a line of 4.0 to 8.5 mm inside diameter, taking the shortest route practicable and using a flow rate such that the transport time is less than 10 seconds. The line shall be maintained at a temperature of 160°C ±15°C (with a stability of ±10°C). When sampling to measure HC, CO, \(\text{CO}_2 \) and \(\text{NO}_x \) components, the line shall be constructed in stainless steel or carbon-loaded grounded PTFE.

5.2 HC analyser

The measurement of total hydrocarbon sample content shall be made by an analyser using the heated flame ionization detector (FID), between the electrodes of which passes an ionization current proportional to the mass rate of hydrocarbon entering a hydrogen flame. The analyser shall be deemed to include components arranged to control temperature and flow rates of sample, sample bypass, fuel and diluent gases, and to enable effective span and zero calibration checks.

Note. An overall specification is given in Attachment A to this appendix.

5.3 CO and \(\text{CO}_2 \) analysers

Non-dispersive infrared analysers shall be used for the measurement of these components, and shall be of the design which utilizes differential energy absorption in parallel reference and sample gas cells, the cell or group of cells for each of these gas constituents being sensitized appropriately. This analysis subsystem shall include all necessary functions for the control and handling of sample, zero and span gas flows. Temperature control shall be that appropriate to whichever basis of measurement, wet or dry, is chosen.

Note. An overall specification is given in Attachment B to this appendix.
5.4 NO\textsubscript{x} analyser

The measurement of NO concentration shall be by the chemiluminescent method in which the measure of the radiation intensity emitted during the reaction of the NO in the sample with added O\textsubscript{3} is the measure of the NO concentration. The NO\textsubscript{2} component shall be converted to NO in a converter of the requisite efficiency prior to measurement. The resultant NO\textsubscript{x} measurement system shall include all necessary flow, temperature and other controls and provide for routine zero and span calibration as well as for converter efficiency checks.

Note. - An overall specification is given in Attachment C to this appendix.

6. GENERAL TEST PROCEDURES

6.1 Engine operation

The engine shall be operated on an open air static test facility which is suitable and properly equipped for high accuracy performance testing, and which conforms to the requirements for sampling probe installation as specified in 5.1. The emissions tests shall be made at the power settings prescribed by the certificating authority. The engine shall be stabilized at each setting.

6.2 Ambient air conditions

6.2.1 A check shall be made on the ambient concentrations of CO, HC, CO\textsubscript{2} and NO\textsubscript{x}, with the engine under test running at the test condition. Unusually high concentrations indicate abnormal conditions such as exhaust gas recirculation, fuel spillage or some other source of unwanted emissions in the test area and such situations shall be rectified or avoided as appropriate.

Note. - For guidance, the normal ambient concentration of CO\textsubscript{2} is 0.03 per cent, and ambient concentration levels for CO and HC of 5 ppm and NO\textsubscript{x} of 0.5 ppm are unlikely to be exceeded under normal conditions.

6.2.2 Extreme climatic conditions, such as those involving precipitation or excessive wind speed shall also be avoided.

6.3 Major instrument calibration

Note.— The general objective of this calibration is to confirm stability and linearity.

6.3.1 The applicant shall satisfy the certificating authority that the calibration of the analytical system is valid at the time of the test.

6.3.2 For the hydrocarbon analyser this calibration shall include checks that the detector oxygen and differential hydrocarbon responses are within the limits specified in Attachment A to this appendix. The efficiency of the NO\textsubscript{2}/NO converter shall also be checked and verified to meet the requirements in Attachment C to this appendix.

6.3.3 The procedure for checking the performance of each analyser shall be as follows (using the calibration and test gases as specified in Attachment D to this appendix):

a) introduce zero gas and adjust instrument zero, recording setting as appropriate;
b) for each range to be used operationally, introduce calibration gas of (nominally) 90 per cent range full-scale deflection (FSD) concentration; adjust instrument gain accordingly and record its setting;

c) introduce approximately 30, 60 and 90 per cent range FSD concentrations and record analyser readings;

d) fit a least squares straight line to the zero, 30, 60 and 90 per cent concentration points. For the CO and/or CO\textsubscript{2} analyser used in its basic form without linearization of output, a least squares curve of appropriate mathematical formulation shall be fitted using additional calibration points if judged necessary. If any point deviates by more than 2 per cent of the full scale value (or ±1 ppm*, whichever is greater) then a calibration curve shall be prepared for operational use.

6.4 Operation

6.4.1 No measurements shall be made until all instruments and sample transfer lines are warmed up and stable and the following checks have been carried out:

a) leakage check: prior to a series of tests the system shall be checked for leakage by isolating the probe and the analysers, connecting and operating a vacuum pump of equivalent performance to that used in the smoke measurement system to verify that the system leakage flow rate is less than 0.4 L/min referred to normal temperature and pressure;

* Except for the CO\textsubscript{2} analyser, for which the value shall be ±100 ppm.

b) cleanliness check: isolate the gas sampling system from the probe and connect the end of the sampling line to a source of zero gas. Warm the system up to the operational temperature needed to perform hydrocarbon measurements. Operate the sample flow pump and set the flow rate to that used during engine emission testing. Record the hydrocarbon analyser reading. The reading shall not exceed 1 per cent of the engine idle emission level or 1 ppm (both expressed as methane), whichever is the greater.

Note 1.- It is good practice to back-purge the sampling lines during engine running, while the probe is in the engine exhaust but emissions are not being measured, to ensure that no significant contamination occurs.

Note 2.- It is also good practice to monitor the inlet air quality at the start and end of testing and at least once per hour during a test. If levels are considered significant, then they should be taken into account.

6.4.2 The following procedure shall be adopted for operational measurements:

a) apply appropriate zero gas and make any necessary instrument adjustments;

b) apply appropriate calibration gas at a nominal 90 per cent FSD concentration for the ranges to be used, adjust and record gain settings accordingly;

c) when the engine has been stabilized at the requisite operating conditions and sampling location, continue to run it and observe pollutant concentrations until a stabilized reading is obtained, which shall be recorded. At the same engine operating condition repeat the measurement procedure for each of the remaining sampling locations;
d) recheck zero and calibration points at the end of the test and also at intervals not greater than 1 hour during tests. If either has changed by more than ±2 per cent of full scale of range, the test shall be repeated after restoration of the instrument to within its specification.

7. CALCULATIONS

7.1 Gaseous emissions

7.1.1 General

The analytical measurements made shall be the concentrations of the various classes of pollutant, at the relevant afterburning mode(s) of the engine, at the various locations in the sampling plane. In addition to the recording of these basic parameters, other parameters shall be computed and reported, as follows.

7.1.2 Analysis and validation of measurements

a) At each engine setting, the concentrations measured at different probe sampling positions must be averaged as follows:

\[C_{i,\text{ave}} = \frac{1}{n} \sum_{j=1}^{n} C_{i,j} \]

where

\[\sum_{j=1}^{n} \]

is the summation of the total number \(n \) of sampling positions used.

\(C_{i,j} \) Concentration of species \(i \) measured at the \(j\)th sampling position.

\(C_{i,\text{ave}} \) average or mean concentration of species \(i \).

All dry concentration measurements shall be converted into real wet concentrations. (See Attachment E to this appendix).

b) The quality of the measurements for each pollutant will be determined through a comparison with measurements of \(\text{CO}_2 \) using the correlation coefficient:

\[r = \frac{n \sum_{j=1}^{n} C_{i,j} \text{CO}_2 - \sum_{j=1}^{n} C_{i,j} \sum_{j=1}^{n} \text{CO}_2}{\sqrt{\left(\left(n \sum_{j=1}^{n} (\text{CO}_2) - \left(\sum_{j=1}^{n} \text{CO}_2 \right)^2 \right)^2 \right)} \cdot \sqrt{\left(\left(n \sum_{j=1}^{n} C_{i,j} - \left(\sum_{j=1}^{n} C_{i,j} \right)^2 \right)^2 \right)}} \]
Values of \(r \) which are near to 1 indicate that measurements taken over the entire sampling period are sufficiently stable and that the curves are Gaussian. In the event that \(r \) is less than 0.95, measurements must be repeated in a sampling plane located at a more remote distance from the aircraft engine. The measurement process, per se, is then followed by the same calculations and the same demonstration as previously.

7.1.3 Basic parameters

For the measurements at each engine operating mode the average concentration for each gaseous species is estimated as shown in 7.1.2, any necessary corrections for dry sample measurement and/or interferences having been made as indicated in Attachment E to this appendix. These average concentrations are used to compute the following basic parameters:

\[
\begin{align*}
E_{l_{p}} \text{ (emission index for component } p) &= \frac{\text{mass of } p \text{ produced in g}}{\text{mass of fuel used in kg}} \\
E_{l(CO)} &= \left(\frac{[CO]}{[CO_2] + [CO] + [HC]} \right) \left(\frac{10^3 M_{CO}}{M_{CO} + (n/m)M_{H_2}} \right) (1 + T(P_0 / m)) \\
E_{l(HC)} &= \left(\frac{[HC]}{[CO_2] + [CO] + [HC]} \right) \left(\frac{10^3 M_{HC}}{M_{HC} + (n/m)M_{H_2}} \right) (1 + T(P_0 / m)) \\
E_{l(NO_2)} \text{ (as NO}_2\text{)} &= \left(\frac{[NO_2]}{[CO_2] + [CO] + [HC]} \right) \left(\frac{10^3 M_{NO_2}}{M_{NO_2} + (n/m)M_{H_2}} \right) (1 - T(P_0 / m)) \\
\text{Air/fuel ratio} &= (P_0 / m) \left(\frac{M_{\text{AIR}}}{M_{C} + (n/m)M_{H_2}} \right)
\end{align*}
\]

where

\[
P_0 / m = \frac{2Z - (n/m)}{4(1 + h_{ad} - [Z / 2])}
\]

and

\[
Z = \frac{2 - [CO] - [CO] / x - [HC] / y / x [HC] + [NO_2]}{[CO_2] + [CO] + [HC]}
\]

- molecular mass of dry air = 28.966 g or, where appropriate, = (32 \(R \) + 28.156 \(S \) + 44.011 \(T \)) g
- \(M_{\text{AIR}} \) molecular mass of exhaust hydrocarbons, taken as \(CH_4 = 16.043 \) g
- \(M_{HC} \) molecular mass of CO = 28.011 g
- \(M_{NO_2} \) molecular mass of NO2 = 46.088 g
- \(M_{C} \) atomic mass of carbon = 12.011 g
The value of n/m, the ratio of the atomic hydrogen to atomic carbon of fuel used, is evaluated by fuel type analysis. The ambient air humidity, h, shall be measured at each set condition. In the absence of contrary evidence as to the characterization (x,y) of the exhaust hydrocarbons, the values $x = 1$, $y = 4$ are to be used. If dry or semi-dry CO and CO$_2$ measurements are to be used then these shall first be converted to the equivalent wet concentrations as shown in Attachment E to this appendix, which also contains interference correction formulas for use as required.

Note. The procedure given in 7.1.4 and 7.2 is only applicable to tests made when afterburning is not used. For tests when afterburning is used, a similar procedure could be used after approval by the certificating authority.

7.1.4 Correction of emission indices to reference conditions

Corrections shall be made to the measured engine emission indices for all pollutants in all relevant engine operating modes to account for deviations from the reference conditions (ISA at sea level) of the actual test inlet air conditions of temperature and pressure. The reference value for humidity shall be 0.00634 kg water/kg dry air.

Thus, $\text{EI corrected} = K \times \text{EI measured}$, where the generalized expression for K is:
\[K = (PB_{ref}/PB)^a (FAR_{ref}/FARB)^b \ \exp\left(\frac{(TB_{ref} - TB)}{c}\right) \ \exp\left(d[h_{vol} - 0.00634]\right) \]

- **PB** - Combustor inlet pressure, measured
- **TB** - Combustor inlet temperature, measured
- **FARB** - Fuel/air ratio in the combustor
- **hvol** - Ambient air humidity, vol water/vol dry air
- **Pref** - ISA sea level pressure
- **Tref** - ISA sea level temperature

Pressure at the combustor inlet of the engine tested (or the reference engine if the data is corrected to a reference engine) associated with TB under ISA sea level conditions.

Temperature at the combustor inlet under ISA sea level conditions for the engine tested (or the reference engine if the data is to be corrected to a reference engine). This temperature is the temperature associated with each thrust level specified for each mode.

Fuel/air ratio in the combustor under ISA sea level conditions for the engine tested (or the reference engine if the data is to be corrected to a reference engine).

\(a, b, c, d \) - Specific constants which may vary for each pollutant and each engine type.

The combustor inlet parameters shall preferably be measured but may be calculated from ambient conditions by appropriate formulas.

7.1.5 Using the recommended curve fitting technique to relate emission indices to combustor inlet temperature

Using the recommended curve fitting technique to relate emission indices to combustor inlet temperature effectively eliminates the \(\exp\left(\frac{(TB_{ref} - TB)}{c}\right) \) term from the generalized equation and for most cases the \((FAR_{ref} / FARB)\) term may be considered unity. For the emissions indices of CO and HC many testing facilities have determined that the humidity term is sufficiently close to unity to be eliminated from the expression and that the exponent of the \((PB_{ref}/PB)\) term is close to unity.

Thus,

- EI(CO) corrected = EI derived from \((PB/PB_{ref})\) " EI(CO) vs. \(T_B \) curve
- EI(HC) corrected = EI derived from \((PB/PB_{ref})\) " EI(HC) vs. \(T_B \) curve
- EI(NO\(_x\)) corrected = EI derived from EI(NO\(_x\)) \((PB_{ref}/PB)^{0.5} \ \exp\left(19[h_{vol} - 0.00634]\right)\) vs. \(T_B \) curve

If this recommended method for the CO and HC emissions index correction does not provide a satisfactory correlation, an alternative method using parameters derived from component tests may be used.

Any other methods used for making corrections to CO, HC and NO\(_x\) emissions indices shall have the approval of the certificating authority.

7.2 Control parameter functions \((D_p, F_{oo}, \))

7.2.1 Definitions
The mass of any gaseous pollutant emitted during the reference emissions landing and take-off cycle.

The maximum thrust available for take-off under normal operating conditions at ISA sea level static conditions, without the use of water injection, as approved by the applicable certificating authority.

The ratio of the mean total pressure at the last compressor discharge plane of the compressor to the mean total pressure at the compressor entry plane when the engine is developing take-off thrust rating at ISA sea level static conditions.

7.2.2 The emission indices (EI) for each pollutant, corrected for pressure and humidity (as appropriate) to the reference ambient atmospheric conditions as indicated in 7.1.4 and if necessary to the reference engine, shall be obtained for the required LTO engine operating mode settings \(n \) of idle, approach, climb-out and take-off, at each of the equivalent corrected thrust conditions. A minimum of three test points shall be required to define the idle mode. The following relationships shall be determined for each pollutant:

a) between EI and \(TB \); and

b) between \(W_f \) (engine fuel mass flow rate) and \(TB \); and

c) between \(F_n \) (corrected to ISA sea level conditions) and \(TB \) (corrected to ISA sea level conditions);

Note.- These are illustrated, for example, by Figure A5-3 a), b) and c).

When the engine being tested is not a “reference” engine, the data may be corrected to “reference” engine conditions using the relationships b) and c) obtained from a reference engine. A reference engine is defined as an engine substantially configured to the description of the engine to be certificated and accepted by the certificating authority to be representative of the engine type for which certification is sought.

The manufacturer shall also supply to the certificating authority all of the necessary engine performance data to substantiate these relationships and for ISA sea level ambient conditions:

d) maximum rated thrust (\(F_{oo} \)); and

e) engine pressure ratio (\() at maximum rated thrust.

Note.- These are illustrated by Figure A5-3 d).

7.2.3 The estimation of EI for each pollutant at each of the required engine mode settings, corrected to the reference ambient conditions, shall comply with the following general procedure:

a) at each mode ISA thrust condition \(F_n \) determine the equivalent combustor inlet temperature (\(TB \)) (Figure A5-3 c));

b) from the EI/\(TB \) characteristic (Figure A5-3 a)), determine the EI, value corresponding to \(TB \);
c) from the W_f/T_B characteristics (Figure A5-3 b)), determine the W_{fn} value corresponding to T_B;

d) note the ISA maximum rated thrust and pressure ratio values. These are F_{∞} and π respectively (Figure A5-3 d));

e) calculate, for each pollutant $D_p = \Sigma (E_{in}) (W_{fn}) (t)$ where:

- t time in LTO mode (minutes)
- W_{fn} fuel mass flow rate (kg/min)

Σ is the *summation* for the set of modes comprising the reference LTO cycle.

7.2.4 While the methodology described above is the recommended method, the certificating authority may accept equivalent mathematical procedures which utilize mathematical expressions representing the curves illustrated if the expressions have been derived using an accepted curve fitting technique.

7.3 **Exceptions to the proposed procedures**

In those cases where the configuration of the engine or other extenuating conditions exist which would prohibit the use of this procedure, the certificating authority, after receiving satisfactory technical evidence of equivalent results obtained by an alternative procedure, may approve an alternative procedure.
Figure A5-3. Calculation procedure

\[E_I = \text{EMISSION INDEX} \]
\[T_B = \text{COMBUSTOR INLET TEMPERATURE} \]
\[W_f = \text{ENGINE FUEL MASS FLOW RATE} \]
\[F = \text{ENGINE THRUST} \]
\[\pi = \text{ENGINE PRESSURE RATIO} \]
ATTACHMENT A TO APPENDIX 5. SPECIFICATION FOR HC ANALYSER

Note 1.— As outlined in 5.2 of Appendix 5, the measuring element in this analyser is the flame ionization detector (FID) in which the whole or a representative portion of the sample flow is admitted into a hydrogen-fuelled flame. With suitably positioned electrodes an ionization current can be established which is a function of the mass rate of hydrocarbon entering the flame. It is this current which, referred to an appropriate zero, is amplified and ranged to provide the output response as a measure of the hydrocarbon concentration expressed as ppmC equivalent.

Note 2.— See Attachment D for information on calibration and test gases.

1. **GENERAL**

 Precautions: The performance specifications indicated are generally for analyser full scale. Errors at part scale may be a significantly greater percentage of reading. The relevance and importance of such increases shall be considered when preparing to make measurements. If better performance is necessary, then appropriate precautions shall be taken.

 The instrument to be used shall be such as to maintain the temperature of the detector and sample-handling components at a set point temperature within the range 155°C to 165°C to a stability of ±2°C. The leading specification points shall be as follows, the detector response having been optimized and the instrument generally having stabilized:

 a) **Total range:** 0 to 500 ppmC in appropriate ranges.

 b) **Resolution:** better than 0.5 per cent of full scale of range used or 0.5 ppmC, whichever is greater.

 c) **Repeatability:** better than ±1 per cent of full scale of range used, or ±0.5 ppmC, whichever is greater.

 d) **Stability:** better than ±2 per cent of full scale of range used or ±1 ppmC, whichever is greater, in a period of 1 hour.

 e) **Zero drift:** less than ±1 per cent of full scale of range used or ±0.5 ppmC, whichever is greater, in a period of 1 hour.

 f) **Noise:** 0.5 Hz and greater, less than ±1 per cent of full scale of range used or ±0.5 ppmC, whichever is greater.

 g) **Response time:** shall not exceed 10 seconds from inlet of the sample to the analysis system, to the achievement of 90 per cent of the final reading.

 h) **Linearity:** response with propane in air shall be linear for each range within ±2 per cent of full scale, otherwise calibration corrections shall be used.

2. **SYNERGISTIC EFFECTS**

 Note.— In application there are two aspects of performance which can affect the accuracy of measurement:

 a) **the oxygen effect** (whereby differing proportions of oxygen present in the sample give differing indicated hydrocarbon concentration for constant actual HC concentrations); and
b) the relative hydrocarbon response (whereby there is a different response to the same sample hydrocarbon concentrations expressed as equivalent ppmC, dependent on the class or admixture of classes of hydrocarbon compounds).

The magnitude of the effects noted above shall be determined as follows and limited accordingly.

Oxygen response: measure the response with two blends of propane, at approximately 500 ppmC concentration known to a relative accuracy of ±1 per cent, as follows:

1) propane in 10 ±1 per cent O$_2$, balance N$_2$
2) propane in 21 ±1 per cent O$_2$, balance N$_2$

If R_1 and R_2 are the respective normalized responses then $(R_1 - R_2)$ shall be less than 3 per cent of R_1.

Differential hydrocarbon response: measure the response with four blends of different hydrocarbons in air, at concentrations of approximately 500 ppmC, known to a relative accuracy of ±1 per cent, as follows:

- a) propane in zero air
- b) propylene in zero air
- c) toluene in zero air
- d) n-hexane in zero air.

If R_a, R_b, R_c and R_d are, respectively, the normalized responses (with respect to propane), then $(R_a - R_b)$, $(R_a - R_c)$ and $(R_a - R_d)$ shall each be less than 5 per cent of R_a.

3. OPTIMIZATION OF DETECTOR RESPONSE AND ALIGNMENT

3.1
The manufacturer’s instructions for initial setting up procedures and ancillary services and supplies required shall be implemented, and the instrument allowed to stabilize. All setting adjustments shall involve iterative zero checking, and correction as necessary. Using as sample a mixture of approximately 500 ppmC of propane in air, the response characteristics for variations first in fuel flow and then, near an optimum fuel flow, for variations in dilution air flow to select its optimum shall be determined. The oxygen and differential hydrocarbon responses shall then be determined as indicated above.

3.2
The linearity of each analyser range shall be checked by applying propane in air samples at concentrations of approximately 30, 60 and 90 per cent of full scale. The maximum response deviation of any of these points from a least squares straight line (fitted to the points and zero) shall not exceed ±2 per cent of full scale value. If it does, a calibration curve shall be prepared for operational use.
ATTACHMENT B TO APPENDIX 5. SPECIFICATION FOR CO AND CO2 ANALYSERS

Note 1.- Paragraph 5.3 of Appendix 5 summarizes the characteristics of the analysis subsystem to be employed for the individual measurements of CO and CO2 concentrations in the exhaust gas sample. The instruments are based on the principle of non-dispersive absorption of infrared radiation in parallel reference and sample gas cells. The required ranges of sensitivity are obtained by use of stacked sample cells or changes in electronic circuitry or both. Interferences from gases with overlapping absorption bands may be minimized by gas absorption filters and/or optical filters, preferably the latter.

Note 2.- See Attachment D for information on calibration and test gases.

Precautions: The performance specifications indicated are generally for analyser full scale. Errors at part scale may be a significantly greater percentage of reading. The relevance and importance of such increases shall be considered when preparing to make measurements. If better performance is necessary, then appropriate precautions shall be taken.

The principal performance specification shall be as follows:

CO Analyser

a) *Total range:* 0 to 2500 ppm in appropriate ranges.

b) *Resolution:* better than 0.5 per cent of full scale of range used or 1 ppm, whichever is greater.

c) *Repeatability:* better than ±1 per cent of full scale of range used, or ±2 ppm, whichever is greater.

d) *Stability:* better than ±2 per cent of full scale of range used or ±2 ppm, whichever is greater, in a period of 1 hour.

e) *Zero drift:* less than ±1 per cent of full scale of range used or ±2 ppm, whichever is greater, in a period of 1 hour.

f) *Noise:* 0.5 Hz and greater, less than ±1 per cent of full scale of range used or ±1 ppm, whichever is greater.

g) *Interferences:* to be limited with respect to indicated CO concentration as follows:

1) less than 500 ppm/per cent ethylene concentration

2) less than 2 ppm/per cent CO2 concentration

3) less than 2 ppm/per cent water vapour.

If the interference limitation(s) for CO2 and/or water vapour cannot be met, appropriate correction factors shall be determined, reported and applied.

Note: It is recommended as consistent with good practice that such correction procedures be adopted in all cases.

* Need not apply where measurements are on a “dry” basis.

CO2 Analyser

a) *Total range:* 0 to 10 per cent in appropriate ranges.
b) **Resolution:** better than 0.5 per cent of full scale of range used or 100 ppm, whichever is greater.

c) **Repeatability:** better than ±1 per cent of full scale of range used or ±100 ppm, whichever is greater.

d) **Stability:** better than ±2 per cent of full scale of range used or ±100 ppm, whichever is greater, in a period of 1 hour.

e) **Zero drift:** less than ±1 per cent of full scale of range used or ±100 ppm, whichever is greater, in a period of 1 hour.

f) **Noise:** 0.5 Hz and greater, less than ±1 per cent of full scale of range used or ±100 ppm, whichever is greater.

(g) The effect of oxygen (O\textsubscript{2}) on the CO\textsubscript{2} analyser response shall be checked. For a change from 0 per cent O\textsubscript{2} to 21 per cent O\textsubscript{2} the response of a given CO\textsubscript{2} concentration shall not change by more than 2 per cent of reading. If this limit cannot be met an appropriate correction factor shall be applied.

Note: It is recommended as consistent with good practice that such correction procedures be adopted in all cases.

CO and CO\textsubscript{2} Analysers

a) **Response time:** shall not exceed 10 seconds from inlet of the sample to the analysis system, to the achievement of 90 per cent of the final reading.

b) **Sample temperature:** the normal mode of operation is for analysis of the sample in its (untreated) “wet” condition. This requires that the sample cell and all other components in contact with the sample in this subsystem be maintained at a temperature of not less than 50°C, with a stability of ±2°C. The option to measure CO and CO\textsubscript{2} on a dry basis (with suitable water traps) is allowed, in which case unheated analysers are permissible and the interference limits for H\textsubscript{2}O vapour removed, and subsequent correction for inlet water vapour and water of combustion is required.

c) **Calibration curves:**

i) Analysers with a linear signal output characteristic shall be checked on all working ranges using calibration gases at known concentrations of approximately 0, 30, 60 and 90 per cent of full scale. The maximum response deviation of any of these points from a least squares straight line, fitted to the points and the zero reading, shall not exceed ±2 per cent of the full scale value. If it does then a calibration curve shall be prepared for operational use.

ii) Analysers with a non-linear signal output characteristic, and those that do not meet the requirements of linearity given above, shall have calibration curves prepared for all working ranges using calibration gases at known concentrations of approximately 0, 30, 60 and 90 per cent of full scale. Additional mixes shall be used, if necessary, to define the curve shape properly.
ATTACHMENT C TO APPENDIX 5. SPECIFICATION FOR NO\textsubscript{x} ANALYSER

Note.— See Attachment D for information on calibration and test gases.

1. As indicated in 5.4 of Appendix 5, the measurement of the oxides of nitrogen concentration shall be by the chemiluminescent technique in which radiation emitted by the reaction of NO and O\textsubscript{3} is measured. This method is not sensitive to NO\textsubscript{2} and therefore the sample shall be passed through a converter in which NO\textsubscript{2} is converted to NO before the measurement of total NO\textsubscript{x} is made. Both the original NO and the total NO\textsubscript{x} concentrations shall be recorded. Thus by difference, a measure of the NO\textsubscript{2} concentration shall be obtained.

2. The instrument to be used shall be complete with all necessary flow control components, such as regulators, valves, flowmeters, etc. Materials in contact with the sample gas shall be restricted to those which are resistant to attack by oxides of nitrogen, such as stainless steel, glass, etc. The temperature of the sample shall everywhere be maintained at values, consistent with the local pressures, which avoid condensation of water.

Precautions: The performance specifications indicated are generally for analyser full scale. Errors at part scale may be a significantly greater percentage of reading. The relevance and importance of such increases shall be considered when preparing to make measurements. If better performance is necessary, then appropriate precautions shall be taken.

3. The principal performance specification, determined for the instrument operated in an ambient temperature stable to within 2°C, shall be as follows:

a) **Total range:** 0 to 2500 ppm in appropriate ranges.

b) **Resolution:** better than 0.5 per cent of full scale of range used or 1 ppm, whichever is greater.

c) **Repeatability:** better than ±1 per cent of full scale of range used, or ±1 ppm, whichever is greater.

d) **Stability:** better than ±2 per cent of full scale of range used or ±1 ppm, whichever is greater, in a period of 1 hour.

e) **Zero drift:** less than ±1 per cent of full scale of range used or ±1 ppm, whichever is greater, in a period of 1 hour.

f) **Noise:** 0.5 Hz and greater, less than ±1.0 per cent of full scale of range used or ±1 ppm, whichever is greater, in a period of 2 hours.

g) **Interference:** suppression for samples containing CO\textsubscript{2} and water vapour, shall be limited as follows:

 -- less than 0.05 per cent reading/per cent CO\textsubscript{2} concentration;
— less than 0.1 per cent reading/per cent water vapour concentration.

If the interference limitation(s) for CO2 and/or water vapour cannot be met, appropriate correction factors shall be determined, reported and applied.

Note. It is recommended as consistent with good practice that such correction procedures be adopted in all cases.

h) **Response time:** shall not exceed 10 seconds from inlet of the sample to the analysis system to the achievement of 90 per cent of the final reading.

i) **Linearity:** better than ±2 per cent of full scale of range used or ±2 ppm, whichever is greater.

j) **Converter:** this shall be designed and operated in such a matter as to reduce NO2 present in the sample to NO. The converter shall not affect the NO originally in the sample.

The converter efficiency shall not be less than 90 per cent.

This efficiency value shall be used to correct the measured sample NO2 value (i.e.
\[\text{[NO}_2\text{]}_c - \text{[NO]}\]) to that which would have been obtained if the efficiency had not been 100 per cent.
ATTACHMENT D TO APPENDIX 5. CALIBRATION AND TEST GASES

Table of calibration gases

<table>
<thead>
<tr>
<th>Analyser</th>
<th>Gas</th>
<th>Accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>propane in zero air</td>
<td>±2 per cent or ±0.05 ppm**</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2 in zero air</td>
<td>±2 per cent or ±100 ppm**</td>
</tr>
<tr>
<td>CO</td>
<td>CO in zero air</td>
<td>±2 per cent or ±2 ppm**</td>
</tr>
<tr>
<td>NOx</td>
<td>NOx in zero nitrogen</td>
<td>±2 per cent or ±1 ppm**</td>
</tr>
</tbody>
</table>

* Taken over the 95 per cent confidence interval.

** Whichever is greater.

The above gases are required to carry out the routine calibration of analysers during normal operational use.

Table of test gases

<table>
<thead>
<tr>
<th>Analyser</th>
<th>Gas</th>
<th>Accuracy*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HC</td>
<td>propane in 10 ±1 per cent O2 balance zero nitrogen</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>propane in 21 ±1 per cent O2 balance zero nitrogen</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>propylene in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>toluene in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>n-hexane in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>HC</td>
<td>propane in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2 in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>CO2</td>
<td>CO2 in zero nitrogen</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>CO</td>
<td>CO in zero air</td>
<td>±1 per cent</td>
</tr>
<tr>
<td>NOx</td>
<td>NO in zero nitrogen</td>
<td>±1 per cent</td>
</tr>
</tbody>
</table>

* Taken over the 95 per cent confidence interval.

The above gases are required to carry out the tests of Attachments A, B and C.

Carbon monoxide and carbon dioxide calibration gases may be blended singly or as dual component mixtures. Three component mixtures of carbon monoxide, carbon dioxide and propane in zero air may be used, provided the stability of the mixture is assured.
Zero gas as specified for the CO, CO2 and HC analysers shall be zero air (which includes “artificial” air with 20 to 22 per cent O2 blended with N2). For the NOx analyser zero nitrogen shall be used as the zero gas. Impurities in both kinds of zero gas shall be restricted to be less than the following concentrations:

1 ppm C
1 ppm CO
100 ppm CO2
1 ppm NOx

The applicant shall ensure that commercial gases, as supplied, do in fact meet this specification, or are so specified by the vendor.
ATTACHMENT E TO APPENDIX 5. THE CALCULATION OF THE EMISSIONS PARAMETERS - BASIS, MEASUREMENT CORRECTIONS AND ALTERNATIVE NUMERICAL METHOD

1. SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFR</td>
<td>air/fuel ratio; the ratio of the mass flow rate of dry air to that of the fuel</td>
</tr>
<tr>
<td>EI</td>
<td>emission index; $103 \times$ mass flow rate of gaseous emission product in exhaust per unit mass flow rate of fuel</td>
</tr>
<tr>
<td>K</td>
<td>ratio of concentration measured wet to that measured dry (after cold trap)</td>
</tr>
<tr>
<td>L, L'</td>
<td>analyser interference coefficient for interference by CO2</td>
</tr>
<tr>
<td>M, M'</td>
<td>analyser interference coefficient for interference by H2O</td>
</tr>
<tr>
<td>M_{AIR}</td>
<td>molecular mass of dry air = 28.966 g or, where appropriate, = $(32 R + 28.156 4 S + 44.011 T)$ g</td>
</tr>
<tr>
<td>M_{CO}</td>
<td>molecular mass of CO = 28.011 g</td>
</tr>
<tr>
<td>M_{HC}</td>
<td>molecular mass of exhaust hydrocarbon, taken as CH4 = 16.043 g</td>
</tr>
<tr>
<td>M_{NO2}</td>
<td>molecular mass of NO2 = 46.008 g</td>
</tr>
<tr>
<td>M_{C}</td>
<td>atomic mass of carbon = 12.011 g</td>
</tr>
<tr>
<td>M_{H}</td>
<td>atomic mass of hydrogen = 1.008 g</td>
</tr>
<tr>
<td>P_1</td>
<td>number of moles of CO2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_2</td>
<td>number of moles of N2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_3</td>
<td>number of moles of O2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_4</td>
<td>number of moles of H2O in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_5</td>
<td>number of moles of CO in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_6</td>
<td>number of moles of CxHy in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_7</td>
<td>number of moles of NO2 in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_8</td>
<td>number of moles of NO in the exhaust sample per mole of fuel</td>
</tr>
<tr>
<td>P_T</td>
<td>$P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8$</td>
</tr>
<tr>
<td>R</td>
<td>concentration of O2 in dry air, by volume = 0.2095 normally</td>
</tr>
<tr>
<td>S</td>
<td>concentration of N2 + rare gases in dry air, by volume = 0.7902 normally</td>
</tr>
<tr>
<td>T</td>
<td>concentration of CO2 in dry air, by volume = 0.0003 normally</td>
</tr>
<tr>
<td>P_0</td>
<td>number of moles of air per mole of fuel in initial air/fuel mixture</td>
</tr>
<tr>
<td>Z</td>
<td>symbol used and defined in 3.4</td>
</tr>
<tr>
<td>$[\text{CO}_2]$</td>
<td>mean concentration of CO2 in exhaust sample, vol/vol</td>
</tr>
<tr>
<td>$[\text{CO}]$</td>
<td>mean concentration of CO in exhaust sample, vol/vol</td>
</tr>
<tr>
<td>$[\text{HC}]$</td>
<td>mean concentration of HC in exhaust sample, vol/vol</td>
</tr>
<tr>
<td>$[\text{NO}]$</td>
<td>mean concentration of NO in exhaust sample, vol/vol</td>
</tr>
</tbody>
</table>
[NO₂] mean concentration of NO₂ in exhaust sample, vol/vol
[NOₓ] mean concentration of NO and NO₂ in exhaust sample, vol/vol
[NOₓ]c mean concentration of NO in exhaust sample, after passing through the NO₂/NO converter, vol/vol

\[
[\text{NO}_2]_{\text{mean}} = \frac{([\text{NO}_x]_c - [\text{NO}])}{\eta}
\]

\(d\) mean concentration in exhaust sample after cold trap, vol/vol
\(m\) mean concentration measurement indicated before instrument correction applied, vol/vol
\(h_{\text{vol}}\) humidity of ambient air, vol water/vol dry air
\(h_d\) humidity of exhaust sample leaving “drier” or “cold trap”, vol water/vol dry sample

\(m\) number of C atoms in characteristic fuel molecule
\(n\) number of H atoms in characteristic fuel molecule
\(x\) number of C atoms in characteristic exhaust hydrocarbon molecule
\(y\) number of H atoms in characteristic exhaust hydrocarbon molecule efficiency of NO₂/NO converter

2. BASIS OF CALCULATION OF EI AND AFR PARAMETERS

2.1 It is assumed that the balance between the original fuel and air mixture and the resultant state of the exhaust emissions as sampled can be represented by the following equation:

\[
\begin{align*}
C_m H_n + P_0[R(O_2) + S(N_2) + T(CO_2) + h_{\text{vol}}(H_2O)] &= P_1(CO_2) + P_2(N_2) + P_3(O_2) + P_4(H_2O) + \\
&+ P_5(CO) + P_6(C_xH_y) + P_7(NO_2) + P_8(NO)
\end{align*}
\]

from which the required parameters can, by definition, be expressed as

\[
\text{EI(CO)} = P_5 \left(\frac{10^5 M_{CO}}{mM_C + nM_H} \right)
\]

\[
\text{EI(HC)} = xP_6 \left(\frac{10^5 M_{HC}}{mM_C + nM_H} \right) \text{ expressed as methane equivalent}
\]

\[
\text{EI(NO}_x) = (P_7 + P_8) \left(\frac{10^5 M_{NO_2}}{mM_C + nM_H} \right) \text{ expressed as NO}_2 \text{ equivalent}
\]

\[
\text{AFR} = P_9 \left(\frac{M_{\text{AIR}}}{mM_C + nM_H} \right)
\]

2.2 Values for fuel hydrocarbon composition \((m, n)\) are assigned by fuel specification or
analysis. If only the ratio \(n/m \) is so determined, the value \(m = 12 \) may be assigned. The mole fractions of the dry air constituents \((R, S, T) \) are normally taken to be the recommended standard values but alternative values may be assigned, subject to the restriction \(R + S + T = 1 \) and the approval of the certificating authority.

2.3 The ambient air humidity, \(h_{\text{vol}} \), is as measured at each test condition. It is recommended that, in the absence of contrary evidence as to the characterization \((x, y) \) of the exhaust hydrocarbon, values of \(x = 1 \) and \(y = 4 \) are assigned.

2.4 Determination of the remaining unknowns requires the solution of the following set of linear simultaneous equations, where (1) to (4) derive from the fundamental atomic conservation relationships and (5) to (9) represent the gaseous product concentration relationships.

\[
\begin{align*}
 m + TP_0 &= P_1 + P_5 + xP_6 & \cdots & (1) \\
 n + 2h_{\text{vol}}P_0 &= 2P_4 + yP_6 & \cdots & (2) \\
 (2R + 2T + h_{\text{vol}})P_0 &= 2P_1 + 2P_3 + P_4 + P_5 + 2P_7 + P_8 & \cdots & (3) \\
 2SP_0 &= 2P_2 + P_7 + P_8 & \cdots & (4) \\
 [\text{CO}_2]P_T &= P_1 & \cdots & (5) \\
 [\text{CO}]P_T &= P_5 & \cdots & (6) \\
 [\text{HC}]P_T &= xP_6 & \cdots & (7) \\
 [\text{NO}_x]_cP_T &= P_7 + P_8 & \cdots & (8) \\
 [\text{NO}]P_T &= P_8 & \cdots & (9) \\
 P_T &= P_1 + P_2 + P_3 + P_4 + P_5 + P_6 + P_7 + P_8 & \cdots & (10)
\end{align*}
\]

The above set of conditional equations is for the case where all measured concentrations are true ones, that is, not subject to interference effects or to the need to correct for sample drying. In practice, interference effects are usually present to a significant degree in the CO, NO\(_x\) and NO measurements, and the option to measure CO2 and CO on a dry or partially dry basis is often used. The necessary modifications to the relevant equations are described in 2.5 and 2.6.

2.5 The interference effects are mainly caused by the presence of CO\(_2\) and H\(_2\)O in the sample which can affect the CO and NO\(_x\) analysers in basically different ways. The CO analyser is prone to a zero-shifting effect and the NO\(_x\) analyser to a sensitivity change, represented thus:

\[
[\text{CO}] = [\text{CP}]_m + L[\text{CO}_2] + M[\text{H}_2\text{O}]
\]

and

\[
[\text{NO}_x]_c = [\text{NO}_x]_m (1 + L [\text{CO}_2] + M [\text{H}_2\text{O}])
\]

which transform into the following alternative equations to (6), (8) and (9), when interference effects require to be corrected.
2.6 The option to measure CO2 and CO concentrations on a dry or partially dry sample basis, that is, with a sample humidity reduced to h_d, requires the use of modified conditional equations as follows:

$$[\text{CO2}]_d (P_T - P_4) (1 + h_d) = P_1 \quad \text{..........................} \quad (5A)$$

and

$$[\text{CO}]_d (P_T - P_4) (1 + h_d) = P_5$$

However, the CO analyser may also be subject to interference effects as described in 2.5 and so the complete alternative CO measurement concentration equation becomes

$$[\text{CO}]_{md} (P_T - P_4) (1 + h_d) + LP_1 + Mh_d (P_T - P_4) = P_5 \quad \text{....}(6B)$$

3. ANALYTICAL FORMULATIONS

3.1 General

Equations (1) to (10) can be reduced to yield the analytical formulations for the EI and AFR parameters, as given in 7.1 to this appendix. This reduction is a process of progressive elimination of the roots P_0, P_1 through P_8, P_T, making the assumptions that all concentration measurements are of the “wet” sample and do not require interference corrections or the like. In practice the option is often chosen to make the CO2 and CO concentration measurements on a “dry” or “semi-dry” basis; also it is often found necessary to make interference corrections. Formulations for use in these various circumstances are given in 3.2, 3.3 and 3.4.

3.2 Equation for conversion of dry concentration measurements to wet basis

Concentration wet $= K \times$ concentration dry; that is,

$$[\text{CO}]_{wet} = K \times [\text{CO}]_{dry}$$

The following expression for K applies when CO and CO2 are determined on a “dry” basis:

$$K = \frac{4 + (n/m)T + ((n/m)T - 2h_{vol})\left(\frac{[\text{NO2}] - (2\text{[HC]/x}) + (2 + h_{vol})\left(\frac{y/x} - \left[n/m]\text{[HC]}\right)(1 + h_d)}{(2 + h_{vol})(2 + (n/m)(1 + h_d))(\text{[CO2]}_{d} + [\text{CO}]_{d}) - ([n/m]T - 2h_{vol})(1 - [1 + h_d][\text{CO}]_{d})\right)}$$
3.3 **Interference corrections**

The measurements of CO and/or NO\(_x\) and NO may require corrections for interference by the sample CO\(_2\) and water concentrations before use in the above analytical equations. Such corrections can normally be expressed in the following general ways:

\[
[\text{CO}] = [\text{CO}]_m + L[\text{CO}_2] + M[H_2O] \\
[\text{CO}]_d = [\text{CO}]_{md} + L[\text{CO}_2]_d + M \left(\frac{h_d}{1+h_d} \right) \\
[\text{NO}] = [\text{NO}]_m (1 + L[\text{CO}_2] + M'[H_2O]) \\
\eta[\text{NO}_2] = ([\text{NO}_2]_m - [\text{NO}]_m) (1 + L'[\text{CO}_2] + M''[H_2O])
\]

3.4 **Equation for estimation of sample water content**

Water concentration in sample

\[
[H_2O] = \frac{([\nu/2m] + h_{rel}[P_m/m]) ([\text{CO}_2] + [\text{CO}] + [\text{HC}])}{1 + T(P_m/m)} - (\nu/2\nu) [\text{HC}]
\]

where

\[
P_{m/m} = \frac{2Z - (n/m)}{4(1 + h_{rel} - [Z/2])}
\]

and

\[
Z = \frac{2 - [\text{CO}] - ([\nu/2\nu] - [\nu/2\nu]) [\text{HC}] + [\text{NO}_2]}{[\text{CO}_2] + [\text{CO}] + [\text{HC}]}
\]

It should be noted that this estimate is a function of the various analyses concentration readings, which may themselves require water interference correction. For better accuracy an iterative procedure is required in these cases with successive recalculation of the water concentration until the requisite stability is obtained. The use of the alternative, numerical solution methodology (4) avoids this difficulty.

4. **ALTERNATIVE METHODOLOGY - NUMERICAL SOLUTION**

4.1 As an alternative to the analytical procedures summarized in 3 above, it is possible to obtain readily the emissions indices, fuel/air ratio, corrected wet concentrations, etc., by a numerical solution of equations (1) to (10) for each set of measurements, using a digital computer.

4.2 In the equation set (1) to (10) the actual concentration measurements are substituted using whichever of the alternative equations (5A), (6A), etc. applies for the particular measuring system, to take account of interference corrections and/or dried sample measurements.

4.3 Suitable simple two-dimensional array equation-solving computer programmes are widely available and their use for this purpose is convenient and flexible, allowing ready incorporation and identification of any sample drying options and interference or other corrections.
ATTACHMENT F TO APPENDIX 5. SPECIFICATIONS FOR ADDITIONAL DATA

As required in 3.2 of Appendix 5, in addition to the measured sample constituent concentrations, the following data shall also be provided:

a) inlet temperature: measured as the total temperature at a point within one diameter of the engine intake plane to an accuracy of ±0.5°C;

b) inlet humidity (kg water/kg dry air): measured at a point within 15 m of the intake plane ahead of the engine to an accuracy of ±5 per cent of reading;

c) atmospheric pressure: measured within 1 km of the engine test location and corrected as necessary to the test stand altitude to an accuracy of ±100 Pa;

d) fuel mass flow: by direct measurement to an accuracy of ±2 per cent;

e) fuel H/C ratio: defined as \(n/m \), where \(C_m H_n \) is the equivalent hydrocarbon representation of the fuel used in the test and evaluated by reference to the engine fuel type analysis;

f) engine parameters:

1) thrust: by direct measurement to an accuracy of ±1 per cent at take-off power and ±5 per cent at the minimum thrust used in the certification test, with linear variation between these points;

2) rotation speed(s): by direct measurement to an accuracy of at least ±0.5 per cent;

3) gas generator airflow: determined to an accuracy of ±2 per cent by reference to engine performance calibration.

The parameters a), b), d) and f) shall be determined at each engine emissions test setting, while c) shall be determined at intervals of not less than 1 hour over a period encompassing that of the emissions tests.
APPENDIX 6. COMPLIANCE PROCEDURE FOR GASEOUS EMISSIONS AND SMOKE

1. GENERAL

The following general principles shall be followed for compliance with the regulatory levels set forth in Part III, 2.2, 2.3, 3.2 and 3.3:

a) the manufacturer shall be allowed to select for certification testing any number of engines, including a single engine if so desired;

b) all the results obtained during the certification tests shall be taken into account by the certification authority;

c) a total of at least 3 engine tests shall be conducted, so that if a single engine is presented for certification it must be tested at least 3 times;

d) if a given engine is tested several times, the arithmetic mean value of the tests shall be considered to be the mean value for that engine. The certification result \(\bar{X} \) is then the mean of the values \(X_i \) obtained for each engine tested;

e) the manufacturer shall provide to the certificating authority, the information specified in Part III, 2.4 or 3.4 as appropriate;

f) the engines submitted for testing shall have emissions features representative of the engine type for which certification is sought. However, at least one of the engines shall be substantially configured to the production standard of the engine type and have fully representative operating and performance characteristics. One of these engines shall be declared to be the reference standard engine. The methods for correcting to this reference standard engine from any other engines tested shall have the approval of the national certificating authority. The methods for correcting test results for ambient effects shall be those outlined in 7 of Appendix 3 or 7 of Appendix 5, as applicable.

2. COMPLIANCE PROCEDURES

The certificating authority shall award a certificate of compliance if the mean of the values measured and corrected (to the reference standard engine and reference atmospheric conditions) for all the engines tested, when converted to a characteristic level using the appropriate factor which is determined by the number of engines tested \((i)\) as shown in the table below, does not exceed the regulatory level.

Note- The characteristic level of the Smoke Number or gaseous emissions is the mean of the values of all the engines tested, and, for gaseous emissions only, appropriately corrected to the reference standard engine and reference atmospheric conditions, divided by the coefficient corresponding to the number of engines tested, as shown in Table A6-1.
3. PROCEDURE IN THE CASE OF FAILURE

Note- When a certification test fails, it does not necessarily mean that the engine type does not comply with the requirements, but it may mean that the confidence given to the certificating authority in compliance is not sufficiently high, i.e. less than 90 per cent. Consequently, the manufacturer should be allowed to present additional evidence of engine type compliance.

3.1 If an engine type fails a certification test, the certificating authority shall permit the manufacturer, if he/she so wishes, to conduct additional tests on the certification engines. If the total results available still show that the engine type fails the certification requirements, the manufacturer shall be allowed to test as many additional engines as desired. The resulting test results shall then be considered with all previous data.

3.2 If the result is still failure, the manufacturer shall be allowed to select one or more engines for modification. The results of the tests already made on the selected engine(s) while unmodified shall be inspected, and further testing shall be done so that at least three tests are available. The mean of these tests shall be determined for each engine and described as the “unmodified mean”.

3.3 The engine(s) may then be modified, and at least three tests shall be conducted on the modified engine(s), the mean of which shall be described as the “modified mean” in each case. This “modified mean” shall be compared to the “unmodified mean” to give a proportional improvement which shall then be applied to the previous certification test result to determine if compliance has been achieved. It shall be determined before testing of any modified engine is begun that the modification(s) comply with the appropriate airworthiness requirements.

3.4 This procedure shall be repeated until compliance has been demonstrated or the engine type application is withdrawn.

Table

<table>
<thead>
<tr>
<th>Number of engines tested (i)</th>
<th>CO</th>
<th>HC</th>
<th>NO\textsubscript{x}</th>
<th>SN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.814 7</td>
<td>0.649 3</td>
<td>0.862 7</td>
<td>0.776 9</td>
</tr>
<tr>
<td>2</td>
<td>0.877 7</td>
<td>0.768 5</td>
<td>0.909 4</td>
<td>0.852 7</td>
</tr>
<tr>
<td>3</td>
<td>0.924 6</td>
<td>0.857 2</td>
<td>0.944 1</td>
<td>0.909 1</td>
</tr>
<tr>
<td>4</td>
<td>0.934 7</td>
<td>0.876 4</td>
<td>0.951 6</td>
<td>0.921 3</td>
</tr>
<tr>
<td>5</td>
<td>0.941 6</td>
<td>0.889 4</td>
<td>0.956 7</td>
<td>0.929 6</td>
</tr>
<tr>
<td>6</td>
<td>0.946 7</td>
<td>0.899 0</td>
<td>0.960 5</td>
<td>0.935 8</td>
</tr>
<tr>
<td>7</td>
<td>0.950 6</td>
<td>0.906 5</td>
<td>0.963 4</td>
<td>0.940 5</td>
</tr>
<tr>
<td>8</td>
<td>0.953 8</td>
<td>0.912 6</td>
<td>0.965 8</td>
<td>0.944 4</td>
</tr>
<tr>
<td>9</td>
<td>0.956 5</td>
<td>0.917 6</td>
<td>0.967 7</td>
<td>0.947 6</td>
</tr>
<tr>
<td>10</td>
<td>0.958 7</td>
<td>0.921 8</td>
<td>0.969 4</td>
<td>0.950 2</td>
</tr>
<tr>
<td>more than 10</td>
<td>√i</td>
<td>√i</td>
<td>√i</td>
<td>√i</td>
</tr>
</tbody>
</table>